Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 6, Pages 1073–1094
DOI: https://doi.org/10.1070/im1998v062n06ABEH000218
(Mi im218)
 

This article is cited in 1 scientific paper (total in 1 paper)

A group-theoretical property of the ramification filtration

V. A. Abrashkin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Let $\Gamma(p)$ be the Galois group of the maximal $p$-extension of a complete discrete valuation field with a perfect residue field of characteristic $p>0$. If $v_0>-1$ and $\Gamma(p)^{(v_0)}$ is the ramification subgroup of $\Gamma(p)$ in the upper numbering, we prove that any closed non-open finitely generated subgroup of the quotient $\Gamma(p)/\Gamma(p)^{(v_0)}$ is a free pro-$p$-group. In particular, this quotient has no torsion and no non-trivial commuting elements.
Received: 05.01.1997
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1998, Volume 62, Issue 6, Pages 3–26
DOI: https://doi.org/10.4213/im218
Bibliographic databases:
Document Type: Article
MSC: 11S15
Language: English
Original paper language: Russian
Citation: V. A. Abrashkin, “A group-theoretical property of the ramification filtration”, Izv. RAN. Ser. Mat., 62:6 (1998), 3–26; Izv. Math., 62:6 (1998), 1073–1094
Citation in format AMSBIB
\Bibitem{Abr98}
\by V.~A.~Abrashkin
\paper A~group-theoretical property of the ramification filtration
\jour Izv. RAN. Ser. Mat.
\yr 1998
\vol 62
\issue 6
\pages 3--26
\mathnet{http://mi.mathnet.ru/im218}
\crossref{https://doi.org/10.4213/im218}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680878}
\zmath{https://zbmath.org/?q=an:0929.11056}
\elib{https://elibrary.ru/item.asp?id=13277966}
\transl
\jour Izv. Math.
\yr 1998
\vol 62
\issue 6
\pages 1073--1094
\crossref{https://doi.org/10.1070/im1998v062n06ABEH000218}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081370400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747141699}
Linking options:
  • https://www.mathnet.ru/eng/im218
  • https://doi.org/10.1070/im1998v062n06ABEH000218
  • https://www.mathnet.ru/eng/im/v62/i6/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:381
    Russian version PDF:175
    English version PDF:18
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024