Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1976, Volume 10, Issue 3, Pages 463–495
DOI: https://doi.org/10.1070/IM1976v010n03ABEH001711
(Mi im2123)
 

This article is cited in 88 scientific papers (total in 90 papers)

The Weyl group of a graded Lie algebra

È. B. Vinberg
References:
Abstract: The action of the group $G_0$ of fixed points of a semisimple automorphism $\theta$ of a reductive algebraic group $G$ on an eigenspace $V$ of this automorphism in the Lie algebra $\mathfrak g$ of the group $G$ is considered. The linear groups which are obtained in this manner are called $\theta$-groups in this paper; they have certain properties which are analogous to properties of the adjoint group. In particular, the notions of Cartan subgroup and Weyl group can be introduced for $\theta$-groups. It is shown that the Weyl group is generated by complex reflections; from this it follows that the algebra of invariants of any $\theta$-group is free.
Bibliography: 30 titles.
Received: 17.01.1975
Bibliographic databases:
UDC: 519.4
MSC: Primary 17B05; Secondary 20G20, 17B10, 17B20, 17B25, 17B45, 17B65
Language: English
Original paper language: Russian
Citation: È. B. Vinberg, “The Weyl group of a graded Lie algebra”, Math. USSR-Izv., 10:3 (1976), 463–495
Citation in format AMSBIB
\Bibitem{Vin76}
\by \`E.~B.~Vinberg
\paper The Weyl group of a~graded Lie algebra
\jour Math. USSR-Izv.
\yr 1976
\vol 10
\issue 3
\pages 463--495
\mathnet{http://mi.mathnet.ru//eng/im2123}
\crossref{https://doi.org/10.1070/IM1976v010n03ABEH001711}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=430168}
\zmath{https://zbmath.org/?q=an:0363.20035}
Linking options:
  • https://www.mathnet.ru/eng/im2123
  • https://doi.org/10.1070/IM1976v010n03ABEH001711
  • https://www.mathnet.ru/eng/im/v40/i3/p488
  • This publication is cited in the following 90 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024