|
This article is cited in 6 scientific papers (total in 6 papers)
Regularity of infinite exponentials
A. P. Bulanov Obninsk State Technical University for Nuclear Power Engineering
Abstract:
If a sequence $\{a_k\}_{k=0}^{\infty}$ is such that $a_k\ne 0$, $k=0,1,2,\dots$, and $\varlimsup_{n\to\infty}|a_n|=\bar a<\infty$, then
$$
f(z)=\lim_{n\to\infty}a_0z^{a_1z^{a_2z\cdots^{a_{n-1}z^{a_n}}}}
$$
is regular in a domain $U$ such that $D\cap e^K\subset U$, where
$D=\{z\colon|\arg z|<\pi\}$ and $e^K$ is the image of
$K=\biggl\{w:|w|<\dfrac {1}{e\bar a}\biggr\}$ under the map $z=e^w$.
Received: 04.10.1996
Citation:
A. P. Bulanov, “Regularity of infinite exponentials”, Izv. Math., 62:5 (1998), 901–928
Linking options:
https://www.mathnet.ru/eng/im210https://doi.org/10.1070/im1998v062n05ABEH000210 https://www.mathnet.ru/eng/im/v62/i5/p49
|
Statistics & downloads: |
Abstract page: | 381 | Russian version PDF: | 226 | English version PDF: | 11 | References: | 43 | First page: | 1 |
|