Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1975, Volume 9, Issue 5, Pages 1069–1079
DOI: https://doi.org/10.1070/IM1975v009n05ABEH001508
(Mi im2082)
 

This article is cited in 3 scientific papers (total in 3 papers)

On fixed points of generalized linear-fractional transformations

V. A. Khatskevich
References:
Abstract: We study the fixed points of the generalized linear-fractional transformation $F_A$, induced by the plus-operator $A$, of the operator unit ball $\mathscr K_+$ into $\mathscr K_+$. In particular, for a linear-fractional transformation $F_A$ which maps $\mathscr K_+$ into its interior $\mathscr K_+^0$ we prove that if $F_A$ has a fixed point then the latter is unique. If, on the other hand, $F_A$ maps $\mathscr K_+$ onto $\mathscr K_+$, then, provided $F_A$ has a fixed point in $\mathscr K_+^0$, the following alternative is valid:
1) either this is the only fixed point of $F_A$ in $\mathscr K_+$,
2) or $F_A$ has a continuum of fixed points in the interior of $\mathscr K_+$ and at least two fixed points on the boundary $S_+$ of $\mathscr K_+$.
In the intermediate case where $F_A(\mathscr K_+)\ne\mathscr K_+$ but $F_A(\mathscr K_+)\cap S_+\ne\varnothing$ we give an example of a linear-fractional transformation $F_A$ that has two fixed points: one in $\mathscr K_+^0$ and one on $S_+$.
Bibliography: 11 titles.
Received: 14.01.1974
Bibliographic databases:
UDC: 513.88
MSC: Primary 47B50; Secondary 47H10
Language: English
Original paper language: Russian
Citation: V. A. Khatskevich, “On fixed points of generalized linear-fractional transformations”, Math. USSR-Izv., 9:5 (1975), 1069–1079
Citation in format AMSBIB
\Bibitem{Kha75}
\by V.~A.~Khatskevich
\paper On fixed points of generalized linear-fractional transformations
\jour Math. USSR-Izv.
\yr 1975
\vol 9
\issue 5
\pages 1069--1079
\mathnet{http://mi.mathnet.ru//eng/im2082}
\crossref{https://doi.org/10.1070/IM1975v009n05ABEH001508}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=405163}
\zmath{https://zbmath.org/?q=an:0324.47025}
Linking options:
  • https://www.mathnet.ru/eng/im2082
  • https://doi.org/10.1070/IM1975v009n05ABEH001508
  • https://www.mathnet.ru/eng/im/v39/i5/p1130
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024