|
This article is cited in 4 scientific papers (total in 5 papers)
On $\omega$-limit sets of a cylindrical cascade
A. B. Krygin
Abstract:
Let the transformation
$$
T_{\alpha,f}(x,y)=((x+\alpha)\operatorname{mod}1,y+f(x)),
$$
be defined on the cylinder $\mathbf S^1\times\mathbf R$, where $\alpha$ is an irrational number and $f(x)$ is a continuous function on $\mathbf S^1$, with $\int_{\mathbf S^1}f(x)dx=0$. Let $\mathbf L$ be the set of numbers $y$ for which is an $\omega$-limit point for the trajectory of the point $(x_0,y_0)$. In this paper the classification of the sets $\mathbf L$ is carried out and suitable examples are constructed.
Bibliography: 9 items.
Received: 30.01.1975
Citation:
A. B. Krygin, “On $\omega$-limit sets of a cylindrical cascade”, Izv. Akad. Nauk SSSR Ser. Mat., 39:4 (1975), 879–898; Math. USSR-Izv., 9:4 (1975), 831–849
Linking options:
https://www.mathnet.ru/eng/im2057https://doi.org/10.1070/IM1975v009n04ABEH001500 https://www.mathnet.ru/eng/im/v39/i4/p879
|
Statistics & downloads: |
Abstract page: | 241 | Russian version PDF: | 86 | English version PDF: | 9 | References: | 55 | First page: | 1 |
|