Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 3, Pages 493–513
DOI: https://doi.org/10.1070/im1998v062n03ABEH000202
(Mi im202)
 

This article is cited in 6 scientific papers (total in 6 papers)

The restrictions of functions holomorphic in a domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra

Yu. A. Neretin

Moscow State Institute of Electronics and Mathematics
References:
Abstract: We consider the operator of restriction of functions holomorphic in a ball or a polydisc to curves lying on the Shilov boundary. It turns out that any function with polynomial growth near the boundary has such a restriction if the position of the curve satisfies a certain condition: if the domain is a ball, then the curve must be transversal to the standard contact distribution on the sphere, and if the domain is a polydisc, then the curve must be monotonic increasing with respect to all coordinates in the standard coordinatization of the torus. We use assertions of this kind to obtain a simple description of discrete inclusions in spectra (of minimal invariant subspaces) for several problems of $\operatorname{SL}_2(\mathbb R)$-harmonic analysis.
Received: 14.10.1996
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “The restrictions of functions holomorphic in a domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra”, Izv. Math., 62:3 (1998), 493–513
Citation in format AMSBIB
\Bibitem{Ner98}
\by Yu.~A.~Neretin
\paper The restrictions of functions holomorphic in a~domain to curves lying on its boundary, and discrete $\operatorname{SL}_2(\mathbb R)$-spectra
\jour Izv. Math.
\yr 1998
\vol 62
\issue 3
\pages 493--513
\mathnet{http://mi.mathnet.ru//eng/im202}
\crossref{https://doi.org/10.1070/im1998v062n03ABEH000202}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1642160}
\zmath{https://zbmath.org/?q=an:0933.32001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076753000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747253534}
Linking options:
  • https://www.mathnet.ru/eng/im202
  • https://doi.org/10.1070/im1998v062n03ABEH000202
  • https://www.mathnet.ru/eng/im/v62/i3/p67
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:630
    Russian version PDF:280
    English version PDF:23
    References:97
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024