Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 3, Pages 549–580
DOI: https://doi.org/10.1070/im1998v062n03ABEH000198
(Mi im198)
 

This article is cited in 12 scientific papers (total in 12 papers)

Lie algebras over operads and their applications in homotopy theory

V. A. Smirnov

Moscow State Pedagogical University
References:
Abstract: This paper is devoted to the development of algebraic devices that are necessary for describing the homotopy groups of topological spaces. As shown in the note [1], the notion of a Lie algebra over the operad $E_\infty$ must be used for this purpose. Here we consider this notion in more detail, prove its most important properties and clarify the question about the algebraic structure on the homotopy groups of topological spaces. In particular, we show that the homotopy groups of a topological space possess the structure of a Lie $E_\infty$-algebra which determines the homotopy type of the space in the simply-connected case.
Since the notion of an operad is analogous to that of algebra, we begin with recalling the notions of algebra and coalgebra and reviewing the main constructions over them. Then we transfer these constructions to the operad case and use them to investigate the structure of Lie algebras and coalgebras over an operad.
Received: 12.03.1996
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1998, Volume 62, Issue 3, Pages 121–154
DOI: https://doi.org/10.4213/im198
Bibliographic databases:
MSC: 55U15, 57T30
Language: English
Original paper language: Russian
Citation: V. A. Smirnov, “Lie algebras over operads and their applications in homotopy theory”, Izv. RAN. Ser. Mat., 62:3 (1998), 121–154; Izv. Math., 62:3 (1998), 549–580
Citation in format AMSBIB
\Bibitem{Smi98}
\by V.~A.~Smirnov
\paper Lie algebras over operads and their applications in homotopy theory
\jour Izv. RAN. Ser. Mat.
\yr 1998
\vol 62
\issue 3
\pages 121--154
\mathnet{http://mi.mathnet.ru/im198}
\crossref{https://doi.org/10.4213/im198}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1642168}
\zmath{https://zbmath.org/?q=an:0916.55014}
\transl
\jour Izv. Math.
\yr 1998
\vol 62
\issue 3
\pages 549--580
\crossref{https://doi.org/10.1070/im1998v062n03ABEH000198}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076753000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747252254}
Linking options:
  • https://www.mathnet.ru/eng/im198
  • https://doi.org/10.1070/im1998v062n03ABEH000198
  • https://www.mathnet.ru/eng/im/v62/i3/p121
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:419
    Russian version PDF:207
    English version PDF:11
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024