Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 3, Pages 579–610
DOI: https://doi.org/10.1070/IM2009v073n03ABEH002457
(Mi im1969)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems under continuous passage from a definite problem to an indefinite one

D. A. Popov

A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University
References:
Abstract: We consider the problem of the spectrum of a parameter-dependent family of periodic Sturm–Liouville problems for the equation $u''+\lambda^2(g(x)-a)u=0$, where $a\in\mathbb R$ is the parameter of the family and $\lambda$ is the spectral parameter. It is assumed that $g\colon\mathbb R\to\mathbb R$ is a sufficiently smooth $2\pi$-periodic function with one simple maximum $g(x_{\max})= a_1>0$ and one simple minimum $g(x_{\min})=a_2>0$ over a period, and that the functions $g(x-x_{\min})$ and $g(x-x_{\max})$ are even. Under these assumptions, the first two asymptotic terms are calculated explicitly for the positive eigenvalues on the whole interval $0\le a<a_1$, including the neighbourhoods of the points $a=a_1$ and $a=a_2$. For $\lambda\gg1$, it is shown that the spectrum consists of two branches $\lambda=\lambda_{\pm}(a,p)$, indexed by the signs $\pm$ and by an integer $p\in\mathbb Z^+$, $p\gg1$. A unified interpolation formula is derived to describe the asymptotic behaviour of the spectrum branches in the passage from the definite (classical) problem with $a<a_2$ to the indefinite problem with $a>a_2$.
Keywords: definite and indefinite Sturm–Liouville problems, asymptotic behaviour of the spectrum, turning points.
Received: 26.10.2006
Bibliographic databases:
UDC: 517.927.25
Language: English
Original paper language: Russian
Citation: D. A. Popov, “Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems under continuous passage from a definite problem to an indefinite one”, Izv. Math., 73:3 (2009), 579–610
Citation in format AMSBIB
\Bibitem{Pop09}
\by D.~A.~Popov
\paper Asymptotic behaviour of the positive spectrum of a~family of~periodic Sturm--Liouville problems
under continuous passage from a~definite problem to an indefinite one
\jour Izv. Math.
\yr 2009
\vol 73
\issue 3
\pages 579--610
\mathnet{http://mi.mathnet.ru//eng/im1969}
\crossref{https://doi.org/10.1070/IM2009v073n03ABEH002457}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553091}
\zmath{https://zbmath.org/?q=an:05585451}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..579P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268622900005}
\elib{https://elibrary.ru/item.asp?id=20358683}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350639324}
Linking options:
  • https://www.mathnet.ru/eng/im1969
  • https://doi.org/10.1070/IM2009v073n03ABEH002457
  • https://www.mathnet.ru/eng/im/v73/i3/p151
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:665
    Russian version PDF:206
    English version PDF:26
    References:107
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024