Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1979, Volume 13, Issue 3, Pages 589–646
DOI: https://doi.org/10.1070/IM1979v013n03ABEH002078
(Mi im1968)
 

This article is cited in 9 scientific papers (total in 10 papers)

Basicity of some biorthogonal systems and the solution of a multiple interpolation problbm in the $H^p$ classes in the half-plane

M. M. Dzhrbashyan
References:
Abstract: Let $\{\lambda_k\}_1^\infty$ be a sequence in $G^{(+)}=\{z:\operatorname{Im}z>0\}$, and $s_k$ the multiplicity of the occurrences of $\lambda_k$ in the segment $\{\lambda_1,\dots,\lambda_k\}$. Also let $H_+^p$ $(1<p<+\infty)$ be the space of functions $f(z)$ holomorphic in $G^{(+)}$ that obey
$$ \|f\|_p=\sup_{0<y<+\infty}\biggl\{\int^{+\infty}_{-\infty}|f(x+iy)|^p\,dx\biggr\}^{1/p}<\infty. $$
The article gives a completely internal characterization of systems of the form $\bigl\{r_k(z)=\frac{(s_k-1)!}{(z-\overline\lambda_k)^{s_k})}\bigr\}^\infty_{k+1}$ that are not total in $H^p_+$ and of the biorthogonal systems $\{\Omega_k(z)\}_1^\infty$ constructed for such nontotal systems. The closed linear hulls of the systems $\{r_k(z)\}_1^\infty$ and $\{\Omega_k(z)\}_1^\infty$ are also characterized. Criteria for these systems to be bases in their closed linear hulls in the metric of $H^p_+$ are obtained. A complete and effective solution of the multiple interpolation problem in the classes $H_+^p$ is given. In addition it is proved that functions with given interpolation data can be represented both as an interpolation series in the system $\{\Omega_k(z)\}_1^\infty$ and as a series in the system $\{r_k(z)\}_1^\infty$.
Bibliography: 20 titles.
Received: 27.05.1977
Bibliographic databases:
UDC: 517.5
MSC: Primary 30B60; Secondary 30D55, 30E05
Language: English
Original paper language: Russian
Citation: M. M. Dzhrbashyan, “Basicity of some biorthogonal systems and the solution of a multiple interpolation problbm in the $H^p$ classes in the half-plane”, Math. USSR-Izv., 13:3 (1979), 589–646
Citation in format AMSBIB
\Bibitem{Dzh78}
\by M.~M.~Dzhrbashyan
\paper Basicity of some biorthogonal systems and the solution of a~multiple interpolation problbm in the $H^p$ classes in the half-plane
\jour Math. USSR-Izv.
\yr 1979
\vol 13
\issue 3
\pages 589--646
\mathnet{http://mi.mathnet.ru//eng/im1968}
\crossref{https://doi.org/10.1070/IM1979v013n03ABEH002078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=522941}
\zmath{https://zbmath.org/?q=an:0443.30042|0425.30027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JG49100004}
Linking options:
  • https://www.mathnet.ru/eng/im1968
  • https://doi.org/10.1070/IM1979v013n03ABEH002078
  • https://www.mathnet.ru/eng/im/v42/i6/p1322
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:452
    Russian version PDF:146
    English version PDF:24
    References:92
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024