Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1981, Volume 17, Issue 2, Pages 353–368
DOI: https://doi.org/10.1070/IM1981v017n02ABEH001363
(Mi im1956)
 

This article is cited in 2 scientific papers (total in 2 papers)

Extension of convergence of quasipolynomials

A. M. Sedletskii
References:
Abstract: The system $\{\exp(i\lambda_nx)\}$, minimal in $L^p(-a,a)$ ($a<\infty$, $1\leqslant p\leqslant\infty$), is called a system of extension of $L^p$-convergence if any sequence of linear combinations of this system converging in $L^p(-a,a)$ converges in $L^p$-norm on every finite interval. A complete description of systems of extension of convergence is given in the class of systems $\{\exp(i\lambda_nx)\}$ generated by sequences of zeros of entire functions of the form
$$ L(z)=\int_{-a}^a \frac{e^{izt}k(t)}{(a-|t|)^\alpha}\,dt,\quad0<\alpha<1,\quad\operatorname{var}k(t)<\infty,\quad k(\pm a\mp0)\ne0, $$
where $k(t)$ has, in addition, a certain smoothness in a neighborhood of the points $\pm a$. Specifically, for $1<p<\infty$ this property is realized if and only if $\alpha\ne1-1/p$, while for $p=1$ or $\infty$ there is no extension of convergence. This result is applied to the question of bases of exponential functions in $L^p(-a,a)$, $1<p<\infty$.
Bibliography: 13 titles.
Received: 16.10.1979
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1980, Volume 44, Issue 5, Pages 1131–1149
Bibliographic databases:
UDC: 517.5
MSC: Primary 30C15, 46E30; Secondary 26A99, 30D15, 42A45, 45D05
Language: English
Original paper language: Russian
Citation: A. M. Sedletskii, “Extension of convergence of quasipolynomials”, Izv. Akad. Nauk SSSR Ser. Mat., 44:5 (1980), 1131–1149; Math. USSR-Izv., 17:2 (1981), 353–368
Citation in format AMSBIB
\Bibitem{Sed80}
\by A.~M.~Sedletskii
\paper Extension of convergence of quasipolynomials
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1980
\vol 44
\issue 5
\pages 1131--1149
\mathnet{http://mi.mathnet.ru/im1956}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=595261}
\zmath{https://zbmath.org/?q=an:0509.42040|0458.42023}
\transl
\jour Math. USSR-Izv.
\yr 1981
\vol 17
\issue 2
\pages 353--368
\crossref{https://doi.org/10.1070/IM1981v017n02ABEH001363}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MW12400007}
Linking options:
  • https://www.mathnet.ru/eng/im1956
  • https://doi.org/10.1070/IM1981v017n02ABEH001363
  • https://www.mathnet.ru/eng/im/v44/i5/p1131
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:401
    Russian version PDF:97
    English version PDF:15
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024