Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1981, Volume 17, Issue 2, Pages 299–337
DOI: https://doi.org/10.1070/IM1981v017n02ABEH001355
(Mi im1951)
 

This article is cited in 25 scientific papers (total in 25 papers)

Interpolation problems, nontrivial expansions of zero, and representing systems

Yu. F. Korobeinik
References:
Abstract: Let $G$ be a convex domain with support function $h(-\varphi)$, and let $\{\lambda_k\}$ be distinct complex numbers. In this paper the author determines when the system $\{e^{\lambda_kz}\}$ is absolutely representing in the space $A(G)$ of functions analytic in $G$, with the topology of uniform convergence on compact sets. In particular he proves the
Theorem. {\it Let $L(\lambda)$ be an exponential function with indicator $h(\varphi)$ and simple zeros $\{\lambda_n\}_{n=1}^\infty$. For the system $\{e^{\lambda_kz}\}_{k=1}^\infty$ to be absolutely representing in $A(G)$ it is necessary and sufficient that either of the following two conditions hold}:
1) {\it The system $\{e^{\lambda_kz}\}_{k=1}^\infty$ has a nontrivial expansion of zero in $A(G)$, i.e. $\sum_{n=1}^\infty b_ne^{\lambda_nz}=0$ for every $z\in G$}. \smallskip
2) $L(\lambda)$ is a function of completely regular growth and there exists a function $C(\lambda)$ of class $[1,0]$ such that
$$ \varlimsup_{n\to\infty}\left[\frac1{|\lambda_n|}\ln\left|\frac{C(\lambda_n)}{L^{'}(\lambda_n)}\right|+h(\arg\lambda_n)\right]\leqslant0. $$

Bibliography: 16 titles.
Received: 12.04.1979
Bibliographic databases:
UDC: 517.9
MSC: Primary 30B50, 30D10, 30D15, 30E05; Secondary 30B60, 30C15, 46A06, 46A45
Language: English
Original paper language: Russian
Citation: Yu. F. Korobeinik, “Interpolation problems, nontrivial expansions of zero, and representing systems”, Math. USSR-Izv., 17:2 (1981), 299–337
Citation in format AMSBIB
\Bibitem{Kor80}
\by Yu.~F.~Korobeinik
\paper Interpolation problems, nontrivial expansions of zero, and representing systems
\jour Math. USSR-Izv.
\yr 1981
\vol 17
\issue 2
\pages 299--337
\mathnet{http://mi.mathnet.ru//eng/im1951}
\crossref{https://doi.org/10.1070/IM1981v017n02ABEH001355}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=595258}
\zmath{https://zbmath.org/?q=an:0471.30003|0445.30004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MW12400004}
Linking options:
  • https://www.mathnet.ru/eng/im1951
  • https://doi.org/10.1070/IM1981v017n02ABEH001355
  • https://www.mathnet.ru/eng/im/v44/i5/p1066
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024