Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1979, Volume 13, Issue 2, Pages 387–404
DOI: https://doi.org/10.1070/IM1979v013n02ABEH002050
(Mi im1928)
 

This article is cited in 7 scientific papers (total in 7 papers)

Bases of exponential functions in the spaces $E^p$ on convex polygons

A. M. Sedletskii
References:
Abstract: Let $D$ be a convex polygon in the complex plane; let $a_1,a_2,\dots,a_m$ $(m\geq 3)$ be its vertices, numbered in the order of a circuit around $D$ in the positive direction; let $\varphi_k=\arg(a_{k+1}-a_k)-\pi/2$; and let $2l_k$ be the length of the edge $a_k$, $a_{k+1}$. Let $\Lambda=\Lambda_1\cup\Lambda_2\cup\dots\cup\Lambda_m$, where
$$ \Lambda_k=\biggl\{l^{-1}_ke^{-i\varphi_k}\biggl(\pi n+\frac\pi2+\alpha_k+\varepsilon_{kn}\biggr)\biggr\}_{n=0}^{+\infty},\quad k=1,2,\dots,m. $$
If $\alpha_1+\dots+\alpha_m=0$ and $\{\varepsilon_{kn}\}\in l^2$ for $p\geqslant2$ and $\{\varepsilon_{kn}\}\in l^p$ for $1<p\leqslant2$, $ k=1,2,\dots,m$, then $\{\exp(\lambda_nz)\}$, $\lambda_n\in\Lambda$, is a basis in the space $E^p(D)$, $1<p<\infty$.
Bibliography: 16 titles.
Received: 02.03.1978
Bibliographic databases:
UDC: 517.5
MSC: Primary 30H05, 46E15; Secondary 46J15
Language: English
Original paper language: Russian
Citation: A. M. Sedletskii, “Bases of exponential functions in the spaces $E^p$ on convex polygons”, Math. USSR-Izv., 13:2 (1979), 387–404
Citation in format AMSBIB
\Bibitem{Sed78}
\by A.~M.~Sedletskii
\paper Bases of exponential functions in the spaces~$E^p$ on convex polygons
\jour Math. USSR-Izv.
\yr 1979
\vol 13
\issue 2
\pages 387--404
\mathnet{http://mi.mathnet.ru//eng/im1928}
\crossref{https://doi.org/10.1070/IM1979v013n02ABEH002050}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=513915}
\zmath{https://zbmath.org/?q=an:0432.30038|0412.30034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JD23800009}
Linking options:
  • https://www.mathnet.ru/eng/im1928
  • https://doi.org/10.1070/IM1979v013n02ABEH002050
  • https://www.mathnet.ru/eng/im/v42/i5/p1101
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:437
    Russian version PDF:116
    English version PDF:26
    References:96
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024