|
This article is cited in 7 scientific papers (total in 7 papers)
Bases of exponential functions in the spaces $E^p$ on convex polygons
A. M. Sedletskii
Abstract:
Let $D$ be a convex polygon in the complex plane; let $a_1,a_2,\dots,a_m$ $(m\geq 3)$ be its vertices, numbered in the order of a circuit around $D$ in the positive direction; let
$\varphi_k=\arg(a_{k+1}-a_k)-\pi/2$; and let $2l_k$ be the length of the edge $a_k$,
$a_{k+1}$. Let $\Lambda=\Lambda_1\cup\Lambda_2\cup\dots\cup\Lambda_m$, where
$$
\Lambda_k=\biggl\{l^{-1}_ke^{-i\varphi_k}\biggl(\pi n+\frac\pi2+\alpha_k+\varepsilon_{kn}\biggr)\biggr\}_{n=0}^{+\infty},\quad k=1,2,\dots,m.
$$
If $\alpha_1+\dots+\alpha_m=0$ and $\{\varepsilon_{kn}\}\in l^2$ for $p\geqslant2$ and
$\{\varepsilon_{kn}\}\in l^p$ for $1<p\leqslant2$, $ k=1,2,\dots,m$, then
$\{\exp(\lambda_nz)\}$, $\lambda_n\in\Lambda$, is a basis in the space $E^p(D)$,
$1<p<\infty$.
Bibliography: 16 titles.
Received: 02.03.1978
Citation:
A. M. Sedletskii, “Bases of exponential functions in the spaces $E^p$ on convex polygons”, Izv. Akad. Nauk SSSR Ser. Mat., 42:5 (1978), 1101–1119; Math. USSR-Izv., 13:2 (1979), 387–404
Linking options:
https://www.mathnet.ru/eng/im1928https://doi.org/10.1070/IM1979v013n02ABEH002050 https://www.mathnet.ru/eng/im/v42/i5/p1101
|
Statistics & downloads: |
Abstract page: | 429 | Russian version PDF: | 114 | English version PDF: | 24 | References: | 95 | First page: | 1 |
|