Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1974, Volume 8, Issue 1, Pages 61–83
DOI: https://doi.org/10.1070/IM1974v008n01ABEH002096
(Mi im1892)
 

This article is cited in 2 scientific papers (total in 2 papers)

Compact complex homogeneous spaces with solvable fundamental group

D. N. Akhiezer
References:
Abstract: In this paper, complex Lie groups $G$ acting transitively and effectively on complex manifolds $X$ with solvable (nilpotent) fundamental groups are studied. It is shown that if $\pi_1(X)$ is nilpotent, then locally $G=S\times N$, where $S$ is semisimple and $N$ is nilpotent. In the case when $\pi_1(X)$ is solvable, the Levi decomposition of the group $G$ is direct if and only if the stationary subgroup contains a maximal unipotent subgroup of the semisimple part. The question of the existence of transitive semisimple groups on $X$ is considered.
Received: 09.11.1972
Bibliographic databases:
UDC: 513.6
MSC: Primary 57E20, 32C10; Secondary 22E10
Language: English
Original paper language: Russian
Citation: D. N. Akhiezer, “Compact complex homogeneous spaces with solvable fundamental group”, Math. USSR-Izv., 8:1 (1974), 61–83
Citation in format AMSBIB
\Bibitem{Akh74}
\by D.~N.~Akhiezer
\paper Compact complex homogeneous spaces with solvable fundamental group
\jour Math. USSR-Izv.
\yr 1974
\vol 8
\issue 1
\pages 61--83
\mathnet{http://mi.mathnet.ru//eng/im1892}
\crossref{https://doi.org/10.1070/IM1974v008n01ABEH002096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=340654}
\zmath{https://zbmath.org/?q=an:0309.22008}
Linking options:
  • https://www.mathnet.ru/eng/im1892
  • https://doi.org/10.1070/IM1974v008n01ABEH002096
  • https://www.mathnet.ru/eng/im/v38/i1/p59
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:255
    Russian version PDF:82
    English version PDF:7
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024