Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1977, Volume 11, Issue 5, Pages 909–935
DOI: https://doi.org/10.1070/IM1977v011n05ABEH001751
(Mi im1875)
 

This article is cited in 1 scientific paper (total in 1 paper)

On finite-dimensional superintuitionistic logics

S. K. Sobolev
References:
Abstract: A pseudoboolean algebra $\mathfrak M$ is called $n$-dimensional if the lattice $(Z_2)^{n+1}$ is not embeddable in $\mathfrak M$ as a lattice, where $Z_2$ is the two-element lattice. A superintuitionistic logic is said to be $n$-dimensional if the formula $E_n(x_1,\dots,x_n)\leftrightharpoons\bigvee_{i=1}^{n+1}(x_i=\bigvee_{j\ne i}x_j)$ belongs to it. A logic is $n$-dimensional if and only if it is approximable by $n$-dimensional algebras. All finite-dimensional logics are complete relative to Kripke semantics. An example is given of a formula that generates a logic not approximable by finite-dimensional algebras. It is proved that for every $n$, every finitely axiomatizable $n$-dimensional logic containing the formula $H(x,y)\leftrightharpoons(((x\to y)\to x)\to x)\vee (((y\to x)\to y)\to y)$ is decidable (already for $n=2$ there exist among such logics non-finitely-approximable ones). The proof uses the theory of finite automata on $\omega$-sequences.
Bibliography: 10 titles.
Received: 30.11.1976
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1977, Volume 41, Issue 5, Pages 963–986
Bibliographic databases:
UDC: 51.01.16
MSC: Primary 02E05, 02J05; Secondary 02F10
Language: English
Original paper language: Russian
Citation: S. K. Sobolev, “On finite-dimensional superintuitionistic logics”, Izv. Akad. Nauk SSSR Ser. Mat., 41:5 (1977), 963–986; Math. USSR-Izv., 11:5 (1977), 909–935
Citation in format AMSBIB
\Bibitem{Sob77}
\by S.~K.~Sobolev
\paper On finite-dimensional superintuitionistic logics
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1977
\vol 41
\issue 5
\pages 963--986
\mathnet{http://mi.mathnet.ru/im1875}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=491051}
\zmath{https://zbmath.org/?q=an:0368.02062|0388.03027}
\transl
\jour Math. USSR-Izv.
\yr 1977
\vol 11
\issue 5
\pages 909--935
\crossref{https://doi.org/10.1070/IM1977v011n05ABEH001751}
Linking options:
  • https://www.mathnet.ru/eng/im1875
  • https://doi.org/10.1070/IM1977v011n05ABEH001751
  • https://www.mathnet.ru/eng/im/v41/i5/p963
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:335
    Russian version PDF:125
    English version PDF:14
    References:42
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024