Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1977, Volume 11, Issue 4, Pages 725–748
DOI: https://doi.org/10.1070/IM1977v011n04ABEH001743
(Mi im1865)
 

This article is cited in 1 scientific paper (total in 1 paper)

Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$

M. M. Malamud, È. R. Tsekanovskii
References:
Abstract: In this article a method of a priori estimates is used to solve an integro-differential equation and to substantially strengthen previously obtained sufficient conditions for the operator $\mathscr Kf=i\int_0^xk(x,t)f(t)\,dt$ to be similar to the operator $\mathscr Tf=i\int_0^xf(t)\,dt$ in the scale $L_p[0,1]$. Criteria for the similarity of $\mathscr K$ to $\mathscr T$ are found for a wide class of kernels which depend on a difference.
Bibliography: 17 titles.
Received: 30.12.1974
Bibliographic databases:
UDC: 513.88
MSC: Primary 47G05; Secondary 45K05
Language: English
Original paper language: Russian
Citation: M. M. Malamud, È. R. Tsekanovskii, “Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$”, Math. USSR-Izv., 11:4 (1977), 725–748
Citation in format AMSBIB
\Bibitem{MalTse77}
\by M.~M.~Malamud, \`E.~R.~Tsekanovskii
\paper Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$
\jour Math. USSR-Izv.
\yr 1977
\vol 11
\issue 4
\pages 725--748
\mathnet{http://mi.mathnet.ru//eng/im1865}
\crossref{https://doi.org/10.1070/IM1977v011n04ABEH001743}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=473924}
\zmath{https://zbmath.org/?q=an:0367.45003}
Linking options:
  • https://www.mathnet.ru/eng/im1865
  • https://doi.org/10.1070/IM1977v011n04ABEH001743
  • https://www.mathnet.ru/eng/im/v41/i4/p768
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024