Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1975, Volume 9, Issue 2, Pages 227–241
DOI: https://doi.org/10.1070/IM1975v009n02ABEH001474
(Mi im1828)
 

This article is cited in 35 scientific papers (total in 35 papers)

Behavior of theta series of degree $n$ under modular substitutions

A. N. Andrianov, G. N. Maloletkin
References:
Abstract: Let $F$ be an integral, symmetric, positive definite matrix of order $m\geqslant1$ with an even diagonal. For the theta series of $F$ of degree $n\geqslant1$
$$ \theta_F^{(n)}(Z)=\sum_x^F\exp(\pi i\operatorname{Tr}(^tXFXZ)), $$
where $X$ runs through all integral $m\times n$ matrices and $Z$ is a point of the Siegel upper halfplane of degree $n$, the congruence subgroup of the group $Sp_n(\mathbf Z)$ is found, with respect to which $\theta_F^{(n)}(Z)$ is a Siegel modular form with a multiplicator system (the analog of the group $\Gamma_0(q)$)). The analogous problem is solved for theta series of degree $n$ with spherical functions. The appropriate multiplicator systems are computed for even $m$.
Bibliography: 5 items.
Received: 18.02.1974
Bibliographic databases:
UDC: 511.466+517.863
MSC: Primary 10A20, 10D05, 10G05; Secondary 10C05
Language: English
Original paper language: Russian
Citation: A. N. Andrianov, G. N. Maloletkin, “Behavior of theta series of degree $n$ under modular substitutions”, Math. USSR-Izv., 9:2 (1975), 227–241
Citation in format AMSBIB
\Bibitem{AndMal75}
\by A.~N.~Andrianov, G.~N.~Maloletkin
\paper Behavior of theta series of degree~$n$ under modular substitutions
\jour Math. USSR-Izv.
\yr 1975
\vol 9
\issue 2
\pages 227--241
\mathnet{http://mi.mathnet.ru//eng/im1828}
\crossref{https://doi.org/10.1070/IM1975v009n02ABEH001474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=379382}
\zmath{https://zbmath.org/?q=an:0316.10017}
Linking options:
  • https://www.mathnet.ru/eng/im1828
  • https://doi.org/10.1070/IM1975v009n02ABEH001474
  • https://www.mathnet.ru/eng/im/v39/i2/p243
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:441
    Russian version PDF:122
    English version PDF:14
    References:70
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024