Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1977, Volume 11, Issue 2, Pages 375–395
DOI: https://doi.org/10.1070/IM1977v011n02ABEH001725
(Mi im1812)
 

This article is cited in 4 scientific papers (total in 4 papers)

On a class of biorthogonal expansions in exponential functions

A. M. Sedletskii
References:
Abstract: We consider a biorthogonal expansion in terms of the system $\{e^{\lambda_nx}\}$, where $\lambda_n$ are the zeros of the entire function
$$ L(z)=h_0e^z+\int_0^1e^{zt}k(t)\,dt,\qquad h_0\ne0, $$
and $k^{(m)}(t)$ has bounded variation for some integer $m\geqslant0$, $k^{(j)}(0)=0$ for $j=0,1,\dots,m-1$ and $k^{(m)}(0+0)\ne0$. The function to be expanded has domain $(0,1)$. We describe the sets of convergence (and divergence) of the series for the classes $L^p$, $C$, $\operatorname{Lip}\alpha$, and $V$. The results indicate that the series have properties different from those of ordinary Fourier series; and the difference becomes more pronounced as $m$ increases.
Bibliography: 16 titles.
Received: 23.12.1975
Bibliographic databases:
UDC: 517.5
MSC: Primary 42A60, 41A30; Secondary 30A16
Language: English
Original paper language: Russian
Citation: A. M. Sedletskii, “On a class of biorthogonal expansions in exponential functions”, Math. USSR-Izv., 11:2 (1977), 375–395
Citation in format AMSBIB
\Bibitem{Sed77}
\by A.~M.~Sedletskii
\paper On a~class of biorthogonal expansions in exponential functions
\jour Math. USSR-Izv.
\yr 1977
\vol 11
\issue 2
\pages 375--395
\mathnet{http://mi.mathnet.ru//eng/im1812}
\crossref{https://doi.org/10.1070/IM1977v011n02ABEH001725}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=481895}
\zmath{https://zbmath.org/?q=an:0355.42011|0379.42006}
Linking options:
  • https://www.mathnet.ru/eng/im1812
  • https://doi.org/10.1070/IM1977v011n02ABEH001725
  • https://www.mathnet.ru/eng/im/v41/i2/p393
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:429
    Russian version PDF:104
    English version PDF:15
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024