Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 2, Pages 313–318
DOI: https://doi.org/10.1070/im1998v062n02ABEH000175
(Mi im175)
 

This article is cited in 6 scientific papers (total in 6 papers)

The Lipschitz constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness

A. V. Marinov
References:
Abstract: We obtain upper estimates for the Lipschitz constants of the metric $\varepsilon$-projection operator $P$ in terms of the modules of convexity and smoothness of the space when the following three parameters are varied: the approximee $x$, the convex approximating set $M$, and the accuracy of approximation $\varepsilon>0$. These estimates are unimprovable in the class of all normed linear spaces. We use them to obtain new stability evaluations for continuous selectors of the operator $P$.
Received: 30.08.1995
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1998, Volume 62, Issue 2, Pages 103–130
DOI: https://doi.org/10.4213/im175
Bibliographic databases:
MSC: 41A65, 47H04
Language: English
Original paper language: Russian
Citation: A. V. Marinov, “The Lipschitz constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness”, Izv. RAN. Ser. Mat., 62:2 (1998), 103–130; Izv. Math., 62:2 (1998), 313–318
Citation in format AMSBIB
\Bibitem{Mar98}
\by A.~V.~Marinov
\paper The Lipschitz constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness
\jour Izv. RAN. Ser. Mat.
\yr 1998
\vol 62
\issue 2
\pages 103--130
\mathnet{http://mi.mathnet.ru/im175}
\crossref{https://doi.org/10.4213/im175}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1623830}
\zmath{https://zbmath.org/?q=an:0932.41031}
\transl
\jour Izv. Math.
\yr 1998
\vol 62
\issue 2
\pages 313--318
\crossref{https://doi.org/10.1070/im1998v062n02ABEH000175}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075630800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747239599}
Linking options:
  • https://www.mathnet.ru/eng/im175
  • https://doi.org/10.1070/im1998v062n02ABEH000175
  • https://www.mathnet.ru/eng/im/v62/i2/p103
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:639
    Russian version PDF:437
    English version PDF:14
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024