|
This article is cited in 4 scientific papers (total in 4 papers)
$L_p$-convergence of Bieberbach polynomials
I. V. Kulikov
Abstract:
The author proves the estimate
$$
\|p_n-\omega\|_{L_p(G)}\leqslant\frac{c_{p,\varepsilon}}{(\ln\ln n)^{\frac18(1-\theta)-\varepsilon}}
$$
where $G\subset\mathbf C$; $p_n(z)\equiv p_n$ are Bieberbach polynomials for the pair $(G,0)$; $\omega(0)=0$, $\omega'(0)=1$, $\omega(z)=\omega\colon G\to\{z;|z|<R\}$ is a conformal mapping, $\varepsilon>0$, $p\in[1,\infty)$, $0<\theta\equiv\theta(G)<q$. The boundary $\partial G$ is more general than Lipschitz.
Bibliography: 15 titles.
Received: 17.07.1978
Citation:
I. V. Kulikov, “$L_p$-convergence of Bieberbach polynomials”, Math. USSR-Izv., 15:2 (1980), 349–371
Linking options:
https://www.mathnet.ru/eng/im1749https://doi.org/10.1070/IM1980v015n02ABEH001240 https://www.mathnet.ru/eng/im/v43/i5/p1121
|
Statistics & downloads: |
Abstract page: | 381 | Russian version PDF: | 100 | English version PDF: | 18 | References: | 74 | First page: | 1 |
|