Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1980, Volume 15, Issue 1, Pages 145–160
DOI: https://doi.org/10.1070/IM1980v015n01ABEH001192
(Mi im1737)
 

This article is cited in 9 scientific papers (total in 9 papers)

The sum of the values of the divisor function in arithmetic progressions whose difference is a power of an odd prime

M. M. Petechuk
References:
Abstract: For $D=p^m$, with $p$ a fixed odd prime, $D\leqslant x^{3/8-\varepsilon}$ and $(l,D)=1$, the asymptotic formula
$$ \sum_{\substack{n\leqslant x\\n\equiv l\!\!\!\!\pmod D}}\tau_k(n)=\frac{xQ_k(\log x)}{\varphi(D)}+O\biggl(\frac{x^{1-\varkappa}}{\varphi(D)}\biggr), $$
is proved, where $\tau_k(n)$ is the number of positive integer solutions of $x_1\cdots x_k=n$, $Q_k(z)$ is a polynomial of degree $k-1$ in $z$ with coefficients depending on $k$ and $p$, $\varkappa=\min\{\varepsilon/16,\beta/k^3\}$ with $\beta$ a positive constant depending on $p$, and the constant involved in the order $O$ depends on $k$, $p$ and $\varepsilon$.
The proof relies on an idea of A. A. Karatsuba that permits one to solve this problem by means of a scheme for a ternary additive problem.
Bibliography: 10 titles.
Received: 21.03.1979
Bibliographic databases:
UDC: 511
MSC: 10A20
Language: English
Original paper language: Russian
Citation: M. M. Petechuk, “The sum of the values of the divisor function in arithmetic progressions whose difference is a power of an odd prime”, Math. USSR-Izv., 15:1 (1980), 145–160
Citation in format AMSBIB
\Bibitem{Pet79}
\by M.~M.~Petechuk
\paper The sum of the values of the divisor function in arithmetic progressions whose difference is a~power of an odd prime
\jour Math. USSR-Izv.
\yr 1980
\vol 15
\issue 1
\pages 145--160
\mathnet{http://mi.mathnet.ru//eng/im1737}
\crossref{https://doi.org/10.1070/IM1980v015n01ABEH001192}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=548508}
\zmath{https://zbmath.org/?q=an:0447.10042|0409.10031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LB83500006}
Linking options:
  • https://www.mathnet.ru/eng/im1737
  • https://doi.org/10.1070/IM1980v015n01ABEH001192
  • https://www.mathnet.ru/eng/im/v43/i4/p892
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:459
    Russian version PDF:138
    English version PDF:11
    References:61
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024