Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1998, Volume 62, Issue 2, Pages 261–285
DOI: https://doi.org/10.1070/im1998v062n02ABEH000173
(Mi im173)
 

This article is cited in 15 scientific papers (total in 15 papers)

Typical integrable Hamiltonian systems on a four-dimensional symplectic manifold

V. V. Kalashnikov
References:
Abstract: We study the topology of integrable Hamiltonian systems with two degrees of freedom in the neighbourhood of a degenerate circle. Among all degenerate circles, the class of so-called generic degenerate circles is singled out. These circles cannot be removed from the symplectic manifold by a small perturbation of the Poisson action, and the system remains topologically equivalent to the unperturbed system in their neighbourhood. Moreover, if the unperturbed system has only Bott circles and generic degenerate circles, then, under the condition of simplicity, the perturbed system is globally topologically equivalent to it. It is proved that if an additional condition holds, then there is a small perturbation for which all degenerate circles are generic.
Received: 26.08.1994
Bibliographic databases:
MSC: 58F07, 58F05, 54H20
Language: English
Original paper language: Russian
Citation: V. V. Kalashnikov, “Typical integrable Hamiltonian systems on a four-dimensional symplectic manifold”, Izv. Math., 62:2 (1998), 261–285
Citation in format AMSBIB
\Bibitem{Kal98}
\by V.~V.~Kalashnikov
\paper Typical integrable Hamiltonian systems on a~four-dimensional symplectic manifold
\jour Izv. Math.
\yr 1998
\vol 62
\issue 2
\pages 261--285
\mathnet{http://mi.mathnet.ru//eng/im173}
\crossref{https://doi.org/10.1070/im1998v062n02ABEH000173}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1623822}
\zmath{https://zbmath.org/?q=an:0931.37027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075630800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747256349}
Linking options:
  • https://www.mathnet.ru/eng/im173
  • https://doi.org/10.1070/im1998v062n02ABEH000173
  • https://www.mathnet.ru/eng/im/v62/i2/p49
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024