Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1980, Volume 14, Issue 3, Pages 441–498
DOI: https://doi.org/10.1070/IM1980v014n03ABEH001142
(Mi im1722)
 

This article is cited in 8 scientific papers (total in 8 papers)

Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$ type

L. V. Kuz'min
References:
Abstract: For an odd prime $l$ and a cyclotomic $\Gamma$ – $l$-extension $k_\infty/k$ of a field $k$ of $CM$ type, a compact periodic $\Gamma$-module $A_l(k)$, analogous to the Tate module of a function field, is defined. The analog of the Weil scalar product is constructed on the module $A_l(k)$. The properties of this scalar product are examined, and certain other duality relations are determined on $A_l(k)$. It is proved that, in a finite $l$-extension $k'/k$ of $CM$ type, the $\mathbf Z_l$-ranks of $A_l(k)$ and $A_l(k')$ are connected by a relation similar to the Hurwitz formula for the genus of a curve.
Bibliography: 7 titles.
Received: 22.06.1978
Bibliographic databases:
UDC: 519.4
MSC: Primary 12A40; Secondary 12A35, 12A60
Language: English
Original paper language: Russian
Citation: L. V. Kuz'min, “Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$ type”, Math. USSR-Izv., 14:3 (1980), 441–498
Citation in format AMSBIB
\Bibitem{Kuz79}
\by L.~V.~Kuz'min
\paper Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$~type
\jour Math. USSR-Izv.
\yr 1980
\vol 14
\issue 3
\pages 441--498
\mathnet{http://mi.mathnet.ru//eng/im1722}
\crossref{https://doi.org/10.1070/IM1980v014n03ABEH001142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=541659}
\zmath{https://zbmath.org/?q=an:0448.12007|0434.12006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KN98400001}
Linking options:
  • https://www.mathnet.ru/eng/im1722
  • https://doi.org/10.1070/IM1980v014n03ABEH001142
  • https://www.mathnet.ru/eng/im/v43/i3/p483
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:265
    Russian version PDF:101
    English version PDF:10
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024