Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1983, Volume 21, Issue 3, Pages 461–482
DOI: https://doi.org/10.1070/IM1983v021n03ABEH001802
(Mi im1702)
 

This article is cited in 2 scientific papers (total in 2 papers)

Extremality of monosplines of minimal deficiency

A. A. Zhensykbaev
References:
Abstract: Let $M_{wN}^r(A,B)$ be the set of monosplines
$$ M(x)=\int_0^1w(t)(x-t)_+^{r-1}\,dt-\sum_{i=1}^n\sum_{j\in\Gamma_i}a_{ij}(x-x_i)_+^{r-1-j}-\sum_{k=0}^{r-1}b_kx^k $$
that satisfy
$$ M^{(i)}(0)=0\quad(i\in A),\qquad M^{(j)}(1)= 0\quad(j\in B),\qquad\sum_{i=1}^n|\Gamma_i|\leqslant N, $$
where $A,B$ and $\Gamma_i$ are subsets of $Z_r=\{0,1,\dots,r-1\}$, $|\Gamma_i|$ is the number of elements in $\Gamma_i$, $M_{wN}^{r0}(A,B)$ is the subset of elements of $M_{wN}^r(A,B)$ for which $n=N$, $\Gamma_i=\{0\}$ ($i=1,\dots,N$), and $\widetilde M_{wN}^r(A,B)$ and $\widetilde M_{wN}^{r0}(A,B)$ are the corresponding sets of periodic monosplines. It was shown that the monosplines that have the smallest $L_p$-norms in $M_{wN}^r(A, B)$ and $\widetilde M_{wN}^r(A,B)$ belong to $M_{wN}^{r0}(A,B)$ and $\widetilde M_{wN}^{r0}(A,B)$, respectively. Some theorems are also obtained on snakes for monosplines.
Bibliography: 37 titles.
Received: 21.09.1981
Bibliographic databases:
UDC: 517.5
MSC: 41A15, 41A55
Language: English
Original paper language: Russian
Citation: A. A. Zhensykbaev, “Extremality of monosplines of minimal deficiency”, Math. USSR-Izv., 21:3 (1983), 461–482
Citation in format AMSBIB
\Bibitem{Zhe82}
\by A.~A.~Zhensykbaev
\paper Extremality of monosplines of minimal deficiency
\jour Math. USSR-Izv.
\yr 1983
\vol 21
\issue 3
\pages 461--482
\mathnet{http://mi.mathnet.ru//eng/im1702}
\crossref{https://doi.org/10.1070/IM1983v021n03ABEH001802}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=682489}
\zmath{https://zbmath.org/?q=an:0599.41016}
Linking options:
  • https://www.mathnet.ru/eng/im1702
  • https://doi.org/10.1070/IM1983v021n03ABEH001802
  • https://www.mathnet.ru/eng/im/v46/i6/p1175
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:349
    Russian version PDF:79
    English version PDF:16
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024