Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1983, Volume 21, Issue 3, Pages 425–434
DOI: https://doi.org/10.1070/IM1983v021n03ABEH001799
(Mi im1699)
 

This article is cited in 44 scientific papers (total in 45 papers)

Random walks on free periodic groups

S. I. Adian
References:
Abstract: An upper estimate is obtained for the growth exponent of the set of all uncancellable words equal to $1$ in a group given by a system of defining relations with the Dehn condition. By a theorem of Grigorchuk, this yields a sufficient test for the transience of a random walk on a group given by a system of defining relations with the Dehn condition, and for the nonamenability of such a group. It is proved that the free periodic groups $\mathbf B(m,n)$ with $m\geqslant2$ and odd $n\geqslant665$ satisfy this test. A question asked by Kesten in 1959 is thereby answered in the negative, and a conjecture put foth earlier by the author is confirmed.
Bibliography: 7 titles.
Received: 08.06.1982
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1982, Volume 46, Issue 6, Pages 1139–1149
Bibliographic databases:
Document Type: Article
UDC: 519.4
MSC: Primary 20E05, 20F50, 60J15; Secondary 20F05, 20FD6, 20F10, 20F19
Language: English
Original paper language: Russian
Citation: S. I. Adian, “Random walks on free periodic groups”, Math. USSR-Izv., 21:3 (1983), 425–434
Citation in format AMSBIB
\Bibitem{Adi82}
\by S.~I.~Adian
\paper Random walks on free periodic groups
\jour Math. USSR-Izv.
\yr 1983
\vol 21
\issue 3
\pages 425--434
\mathnet{http://mi.mathnet.ru//eng/im1699}
\crossref{https://doi.org/10.1070/IM1983v021n03ABEH001799}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=682486}
\zmath{https://zbmath.org/?q=an:0528.60011|0512.60012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982SD17100001}
Linking options:
  • https://www.mathnet.ru/eng/im1699
  • https://doi.org/10.1070/IM1983v021n03ABEH001799
  • https://www.mathnet.ru/eng/im/v46/i6/p1139
  • This publication is cited in the following 45 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:998
    Russian version PDF:405
    English version PDF:21
    References:141
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024