Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1983, Volume 21, Issue 2, Pages 415–424
DOI: https://doi.org/10.1070/IM1983v021n02ABEH001798
(Mi im1698)
 

This article is cited in 1 scientific paper (total in 1 paper)

The structure of a fundamental system of solutions of a singularly perturbed equation with a regular singular point

S. A. Lomov, A. S. Yudina
References:
Abstract: The method of regularization is applied to obtain a fundamental system of solutions of a singularly perturbed equation with a regular singular point
$$ \varepsilon^2z^2w''+\varepsilon zp(z)w'+g(z)w =0. $$
The solutions are of the form
$$ w_k(z,\varepsilon)=z^{r_k(\varepsilon)/\varepsilon} \exp\biggl\{\frac1{\varepsilon}\int_0^z\lambda_k(\tau)\,d\tau\biggr\} \sum_{i=0}^\infty\varepsilon^iw^k_i(z),\quad k=1,2. $$
The series are asymptotically convergent as $\varepsilon\to0$ uniformly in $z$ in some bounded domain. Here the $r_k(\varepsilon)$ are the roots of the indicial equations, the $\lambda_k(z)$ are the roots of the characteristic equation and the functions $w_i^k(z)$ are the solutions of certain recurrent linear differential equations of the first order. The results are applied to an asymptotic expansion of Bessel functions $I_\nu(\nu z)$ as $\nu\to\infty$.
Bibliography: 5 titles.
Received: 01.07.1981
Bibliographic databases:
UDC: 517.9
MSC: Primary 34A20, 34B30, 34E15; Secondary 33A40, 34D15
Language: English
Original paper language: Russian
Citation: S. A. Lomov, A. S. Yudina, “The structure of a fundamental system of solutions of a singularly perturbed equation with a regular singular point”, Math. USSR-Izv., 21:2 (1983), 415–424
Citation in format AMSBIB
\Bibitem{LomYud82}
\by S.~A.~Lomov, A.~S.~Yudina
\paper The structure of a~fundamental system of solutions of a~singularly perturbed equation with a~regular singular point
\jour Math. USSR-Izv.
\yr 1983
\vol 21
\issue 2
\pages 415--424
\mathnet{http://mi.mathnet.ru//eng/im1698}
\crossref{https://doi.org/10.1070/IM1983v021n02ABEH001798}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=675534}
\zmath{https://zbmath.org/?q=an:0536.34034|0513.34064}
Linking options:
  • https://www.mathnet.ru/eng/im1698
  • https://doi.org/10.1070/IM1983v021n02ABEH001798
  • https://www.mathnet.ru/eng/im/v46/i5/p1124
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024