|
This article is cited in 37 scientific papers (total in 37 papers)
On the determination of the Sturm–Liouville operator from one and two spectra
B. M. Levitan
Abstract:
Let the sequences $\{\lambda_n\}_0^\infty$ and $\{\mu_n\}_0^\infty$ define the Sturm–Liouville problem
\begin{equation}
\tag{I}
\left.\begin{gathered}
-y''+\{\lambda-q(x)\}y=0\quad(0\leqslant x\leqslant\pi),\\
y'(0)-hy(0)=0,\quad y'(\pi)+Hy(\pi)=0,
\end{gathered}\right\}
\end{equation}
and, in addition, let the sequences $\{\widetilde\lambda_n\}_0^\infty=\{\lambda_n\}_0^\infty$ and $\{\widetilde\mu_n\}_0^\infty$, where $\widetilde\mu_n=\mu_n$ for $n>N\geqslant0$,
define a second Sturm–Liouville problem
\begin{equation}
\tag{II}
\left.\begin{gathered}
-y''+\{\lambda-\widetilde q(x)\}y=0,\\
y'(0)-\widetilde hy(0)=0,\quad y'(\pi)+\widetilde Hy(\pi)=0.
\end{gathered}\right\}
\end{equation}
In this paper we show that the kernel $F(x,s)$ of the integral equation for the inverse problem, in which problem (II) is regarded as a perturbation of problem (I), has the form
$$
F(x,s)=\sum_{n=0}^N\psi(x,\widetilde\mu_n)\varphi(s,\widetilde\mu_n),
$$
in the triangle $0\leqslant s\leqslant x\leqslant\pi$, wherein $\psi(x,\lambda)$ and $\varphi(s,\lambda)$ are solutions of (I). In particular, we obtain a new proof of Hochstadt's theorem concerning the structure of the difference $\widetilde q(x)-q(x)$.
Bibliography: 5 titles.
Received: 13.09.1976
Citation:
B. M. Levitan, “On the determination of the Sturm–Liouville operator from one and two spectra”, Math. USSR-Izv., 12:1 (1978), 179–193
Linking options:
https://www.mathnet.ru/eng/im1695https://doi.org/10.1070/IM1978v012n01ABEH001844 https://www.mathnet.ru/eng/im/v42/i1/p185
|
Statistics & downloads: |
Abstract page: | 600 | Russian version PDF: | 195 | English version PDF: | 21 | References: | 67 | First page: | 2 |
|