Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1978, Volume 12, Issue 1, Pages 179–193
DOI: https://doi.org/10.1070/IM1978v012n01ABEH001844
(Mi im1695)
 

This article is cited in 37 scientific papers (total in 37 papers)

On the determination of the Sturm–Liouville operator from one and two spectra

B. M. Levitan
References:
Abstract: Let the sequences $\{\lambda_n\}_0^\infty$ and $\{\mu_n\}_0^\infty$ define the Sturm–Liouville problem
\begin{equation} \tag{I} \left.\begin{gathered} -y''+\{\lambda-q(x)\}y=0\quad(0\leqslant x\leqslant\pi),\\ y'(0)-hy(0)=0,\quad y'(\pi)+Hy(\pi)=0, \end{gathered}\right\} \end{equation}
and, in addition, let the sequences $\{\widetilde\lambda_n\}_0^\infty=\{\lambda_n\}_0^\infty$ and $\{\widetilde\mu_n\}_0^\infty$, where $\widetilde\mu_n=\mu_n$ for $n>N\geqslant0$, define a second Sturm–Liouville problem
\begin{equation} \tag{II} \left.\begin{gathered} -y''+\{\lambda-\widetilde q(x)\}y=0,\\ y'(0)-\widetilde hy(0)=0,\quad y'(\pi)+\widetilde Hy(\pi)=0. \end{gathered}\right\} \end{equation}

In this paper we show that the kernel $F(x,s)$ of the integral equation for the inverse problem, in which problem (II) is regarded as a perturbation of problem (I), has the form
$$ F(x,s)=\sum_{n=0}^N\psi(x,\widetilde\mu_n)\varphi(s,\widetilde\mu_n), $$
in the triangle $0\leqslant s\leqslant x\leqslant\pi$, wherein $\psi(x,\lambda)$ and $\varphi(s,\lambda)$ are solutions of (I). In particular, we obtain a new proof of Hochstadt's theorem concerning the structure of the difference $\widetilde q(x)-q(x)$.
Bibliography: 5 titles.
Received: 13.09.1976
Bibliographic databases:
UDC: 517.9
MSC: Primary 34B25; Secondary 45A05
Language: English
Original paper language: Russian
Citation: B. M. Levitan, “On the determination of the Sturm–Liouville operator from one and two spectra”, Math. USSR-Izv., 12:1 (1978), 179–193
Citation in format AMSBIB
\Bibitem{Lev78}
\by B.~M.~Levitan
\paper On the determination of the Sturm--Liouville operator from one and two spectra
\jour Math. USSR-Izv.
\yr 1978
\vol 12
\issue 1
\pages 179--193
\mathnet{http://mi.mathnet.ru//eng/im1695}
\crossref{https://doi.org/10.1070/IM1978v012n01ABEH001844}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=492498}
\zmath{https://zbmath.org/?q=an:0383.34019|0401.34022}
Linking options:
  • https://www.mathnet.ru/eng/im1695
  • https://doi.org/10.1070/IM1978v012n01ABEH001844
  • https://www.mathnet.ru/eng/im/v42/i1/p185
  • This publication is cited in the following 37 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:600
    Russian version PDF:195
    English version PDF:21
    References:67
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024