Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1980, Volume 14, Issue 1, Pages 79–101
DOI: https://doi.org/10.1070/IM1980v014n01ABEH001079
(Mi im1676)
 

This article is cited in 19 scientific papers (total in 20 papers)

On small perturbations of the set of zeros of functions of sine type

B. Ya. Levin, I. V. Ostrovskii
References:
Abstract: A function of sine type means an entire function $S(z)$ of exponential type $\sigma>\nobreak0$, satisfying the condition $0<C_1\leqslant|S(z)|e^{-\sigma|\operatorname{Im}z|}\leqslant C_2<\infty$ outside some strip $|\operatorname{Im}z|<\nobreak H$. With the normalization $S(0)=1$ these functions can be represented in the form
\begin{equation} S(z)=\lim_{R\to\infty}\prod_{|\lambda_k|<R}(1-z\lambda_k^{-1}). \end{equation}
Let $\widetilde S(z)$ denote the function obtained from $S(z)$ by replacing $\lambda_k$ by $\lambda_k+\psi_k$ in (1), where $\{\psi_k\}$ is a bounded sequence.
In this paper necessary and sufficient conditions on $\{\psi_k\}$ are found, under which $\widetilde S(z)$ is also a function of sine type. Expressions for $\widetilde S(z)$ in terms of $S(z)$ are obtained in the case where $\psi_k=a_1\lambda_k^{-1}+\dots+a_n\lambda_k^{-n}+b_k\lambda_k^{-n}$, where $\{b_k\}\in L^p$, $p>1$.
Bibliography: 9 titles.
Received: 04.10.1977
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1979, Volume 43, Issue 1, Pages 87–110
Bibliographic databases:
UDC: 517.5
MSC: 30C15, 30D15
Language: English
Original paper language: Russian
Citation: B. Ya. Levin, I. V. Ostrovskii, “On small perturbations of the set of zeros of functions of sine type”, Izv. Akad. Nauk SSSR Ser. Mat., 43:1 (1979), 87–110; Math. USSR-Izv., 14:1 (1980), 79–101
Citation in format AMSBIB
\Bibitem{LevOst79}
\by B.~Ya.~Levin, I.~V.~Ostrovskii
\paper On small perturbations of the set of zeros of functions of sine type
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1979
\vol 43
\issue 1
\pages 87--110
\mathnet{http://mi.mathnet.ru/im1676}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=525943}
\zmath{https://zbmath.org/?q=an:0437.30017}
\transl
\jour Math. USSR-Izv.
\yr 1980
\vol 14
\issue 1
\pages 79--101
\crossref{https://doi.org/10.1070/IM1980v014n01ABEH001079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM22000005}
Linking options:
  • https://www.mathnet.ru/eng/im1676
  • https://doi.org/10.1070/IM1980v014n01ABEH001079
  • https://www.mathnet.ru/eng/im/v43/i1/p87
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:626
    Russian version PDF:187
    English version PDF:17
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024