|
This article is cited in 19 scientific papers (total in 20 papers)
On small perturbations of the set of zeros of functions of sine type
B. Ya. Levin, I. V. Ostrovskii
Abstract:
A function of sine type means an entire function $S(z)$ of exponential type $\sigma>\nobreak0$, satisfying the condition $0<C_1\leqslant|S(z)|e^{-\sigma|\operatorname{Im}z|}\leqslant C_2<\infty$ outside some strip $|\operatorname{Im}z|<\nobreak H$. With the normalization $S(0)=1$ these functions can be represented in the form
\begin{equation}
S(z)=\lim_{R\to\infty}\prod_{|\lambda_k|<R}(1-z\lambda_k^{-1}).
\end{equation}
Let $\widetilde S(z)$ denote the function obtained from $S(z)$ by replacing $\lambda_k$ by $\lambda_k+\psi_k$ in (1), where $\{\psi_k\}$ is a bounded sequence.
In this paper necessary and sufficient conditions on $\{\psi_k\}$ are found, under which $\widetilde S(z)$ is also a function of sine type. Expressions for $\widetilde S(z)$ in terms of $S(z)$ are obtained in the case where $\psi_k=a_1\lambda_k^{-1}+\dots+a_n\lambda_k^{-n}+b_k\lambda_k^{-n}$, where $\{b_k\}\in L^p$, $p>1$.
Bibliography: 9 titles.
Received: 04.10.1977
Citation:
B. Ya. Levin, I. V. Ostrovskii, “On small perturbations of the set of zeros of functions of sine type”, Izv. Akad. Nauk SSSR Ser. Mat., 43:1 (1979), 87–110; Math. USSR-Izv., 14:1 (1980), 79–101
Linking options:
https://www.mathnet.ru/eng/im1676https://doi.org/10.1070/IM1980v014n01ABEH001079 https://www.mathnet.ru/eng/im/v43/i1/p87
|
Statistics & downloads: |
Abstract page: | 626 | Russian version PDF: | 187 | English version PDF: | 17 | References: | 74 | First page: | 1 |
|