Abstract:
The basic purpose of this paper is to prove bijectivity of the norm residue homomorphism RF,n:K2(F)/nK2(F)→H2(F,μ⊗2n) for any field F of characteristic prime to n. In particular, if μn⊂F, then any central simple algebra of exponent n is similar to a tensor product of cyclic algebras. In the course of the proof we obtain partial degeneracy of the Gersten spectral sequence, and we compute some K-cohomology groups of Severi–Brauer groups corresponding to cyclic algebras of prime degree. The fundamental theorem also gives us several corollaries.
Bibliography: 27 titles.
Citation:
A. S. Merkur'ev, A. A. Suslin, “Cohomology of Severi–Brauer varieties and the norm residue homomorphism”, Math. USSR-Izv., 21:2 (1983), 307–340
\Bibitem{MerSus82}
\by A.~S.~Merkur'ev, A.~A.~Suslin
\paper Cohomology of Severi--Brauer varieties and the norm residue homomorphism
\jour Math. USSR-Izv.
\yr 1983
\vol 21
\issue 2
\pages 307--340
\mathnet{http://mi.mathnet.ru/eng/im1657}
\crossref{https://doi.org/10.1070/IM1983v021n02ABEH001793}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=675529}
\zmath{https://zbmath.org/?q=an:0525.18008}
Linking options:
https://www.mathnet.ru/eng/im1657
https://doi.org/10.1070/IM1983v021n02ABEH001793
https://www.mathnet.ru/eng/im/v46/i5/p1011
This publication is cited in the following 111 articles:
N. A. Vavilov, “St. Petersburg School of Linear Groups: II. Early Works by Suslin”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 30
Claudio Gómez-Gonzáles, Alexander J. Sutherland, Jesse Wolfson, “Generalized versality, special points, and resolvent degree for the sporadic groups”, Journal of Algebra, 647 (2024), 758
Benson Farb, Mark Kisin, Jesse Wolfson, “Modular functions and resolvent problems”, Math. Ann., 386:1-2 (2023), 113
Theodosis Alexandrou, Stefan Schreieder, “On Bloch's map for torsion cycles over non-closed fields”, Forum of Mathematics, Sigma, 11 (2023)
St. Petersburg Math. J., 34:4 (2023), 715–720
Kanetomo Sato, “Étale cohomology of arithmetic schemes and zeta values of arithmetic surfaces”, Journal of Number Theory, 227 (2021), 166
A. Avilov, “Forms of the Segre Cubic”, Math. Notes, 107:1 (2020), 3–9
K. Banerjee, V. Guletskiǐ, “Étale monodromy and rational equivalence for 1-cycles on cubic hypersurfaces in P5”, Sb. Math., 211:2 (2020), 161–200
Eliyahu Matzri, “A birational interpretation of Severi-Brauer varieties”, Communications in Algebra, 48:2 (2020), 484
Eric Brussel, “Noncyclic division algebras over fields of Brauer dimension one”, Advances in Mathematics, 366 (2020), 107058
A.S. Sivatski, “Degree four cohomological invariants for certain central simple algebras”, Journal of Algebra, 527 (2019), 337
Akinari Hoshi, Ming-chang Kang, Aiichi Yamasaki, “Rationality problems for relation modules of dihedral groups”, Journal of Algebra, 530 (2019), 368
Alexander S. Sivatski, “On the homology groups of the Brauer complex for a triquadratic field extension”, Mathematische Nachrichten, 291:2-3 (2018), 518
Gorchinskiy S., “Integral Chow Motives of Threefolds With K-Motives of Unit Type”, Bull. Korean. Math. Soc., 54:5 (2017), 1827–1849
Uwe Jannsen, “Hasse principles for higher-dimensional fields”, Ann. Math., 183:1 (2016), 1
A. S. Sivatski, “Nonexcellent finite field extensions of 2-primary degree”, manuscripta math., 151:3-4 (2016), 549
Burt Totaro, “Complex varieties with infinite Chow groups modulo 2”, Ann. Math., 2016, 363
Ján Mináč, Nguyẽn.D.uy Tân, “The kernel unipotent conjecture and the vanishing of Massey products for odd rigid fields”, Advances in Mathematics, 273 (2015), 242