Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1983, Volume 20, Issue 3, Pages 459–492
DOI: https://doi.org/10.1070/IM1983v020n03ABEH001360
(Mi im1637)
 

This article is cited in 49 scientific papers (total in 49 papers)

Boundedly nonhomogeneous elliptic and parabolic equations

N. V. Krylov
References:
Abstract: This paper considers elliptic equations of the form
\begin{equation*} 0=F(u_{x^ix^j},u_{x^i},u,1,x) \tag{</nomathmode><mathmode>$*$} \end{equation*}
</mathmode><nomathmode> and parabolic equations of the form
\begin{equation*} u_t=F(u_{x^ix^j},u_{x^i},u,1,t,x), \tag{</nomathmode><mathmode>$**$} \end{equation*}
</mathmode><nomathmode> where $F(u_{ij},u_i,u,\beta,x)$ and $F(u_{ij},u_i,u,\beta,t,x)$ are positive homogeneous functions of the first order of homogeneity with respect to $(u_{ij},u_i,u,\beta)$, convex upwards with respect $u_{ij}$ and satisfying a uniform condition of strict ellipticity. Under certain smoothness conditions on $F$ and boundedness from above of the second derivatives of $F$ with respect to $(u_{ij},u_i,u)$, solvability is established for these equations of a problem over the whole space, of the Dirichlet problem in a domain with a sufficiently regular boundary (for the equation ($*$)), and of the Cauchy problem and the first boundary value problem (for equation ($**$)). Solutions are sought in the classes $C^{2+\alpha}$, and their existence is proved with the aid of internal a priori estimates in $C^{2+\alpha}$.
Bibliography: 29 titles.
Received: 09.07.1981
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1982, Volume 46, Issue 3, Pages 487–523
Bibliographic databases:
UDC: 517.9
MSC: 35A05, 35J15, 35K10
Language: English
Original paper language: Russian
Citation: N. V. Krylov, “Boundedly nonhomogeneous elliptic and parabolic equations”, Izv. Akad. Nauk SSSR Ser. Mat., 46:3 (1982), 487–523; Math. USSR-Izv., 20:3 (1983), 459–492
Citation in format AMSBIB
\Bibitem{Kry82}
\by N.~V.~Krylov
\paper Boundedly nonhomogeneous elliptic and parabolic equations
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1982
\vol 46
\issue 3
\pages 487--523
\mathnet{http://mi.mathnet.ru/im1637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=661144}
\zmath{https://zbmath.org/?q=an:0529.35026|0511.35002}
\transl
\jour Math. USSR-Izv.
\yr 1983
\vol 20
\issue 3
\pages 459--492
\crossref{https://doi.org/10.1070/IM1983v020n03ABEH001360}
Linking options:
  • https://www.mathnet.ru/eng/im1637
  • https://doi.org/10.1070/IM1983v020n03ABEH001360
  • https://www.mathnet.ru/eng/im/v46/i3/p487
  • This publication is cited in the following 49 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1454
    Russian version PDF:517
    English version PDF:56
    References:113
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024