Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1983, Volume 20, Issue 2, Pages 333–354
DOI: https://doi.org/10.1070/IM1983v020n02ABEH001353
(Mi im1619)
 

This article is cited in 10 scientific papers (total in 10 papers)

A finiteness theorem for representations with a free algebra of invariants

V. L. Popov
References:
Abstract: It is proved that for any connected semisimple algebraic group $G$ defined over an algebraically closed field of characteristic zero there exist (up to isomorphism) only a finite number of finite-dimensional rational $G$-modules containing no nonzero fixed vectors and having a free algebra of invariants. The proof is constructive and makes it possible in principle to indicate these $G$-modules explicitly. It is also proved that for all irreducible $G$-modules $V$, except for a finite number, the degree of the Poincaré series of the algebra of invariants (regarded as a rational function) equals $-\dim V$.
Bibliography: 21 titles.
Received: 14.09.1981
Bibliographic databases:
Document Type: Article
UDC: 519.4
MSC: Primary 15A72, 20G05; Secondary 52A25
Language: English
Original paper language: Russian
Citation: V. L. Popov, “A finiteness theorem for representations with a free algebra of invariants”, Math. USSR-Izv., 20:2 (1983), 333–354
Citation in format AMSBIB
\Bibitem{Pop82}
\by V.~L.~Popov
\paper A~finiteness theorem for representations with a~free algebra of invariants
\jour Math. USSR-Izv.
\yr 1983
\vol 20
\issue 2
\pages 333--354
\mathnet{http://mi.mathnet.ru//eng/im1619}
\crossref{https://doi.org/10.1070/IM1983v020n02ABEH001353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=651651}
\zmath{https://zbmath.org/?q=an:0547.20034}
Linking options:
  • https://www.mathnet.ru/eng/im1619
  • https://doi.org/10.1070/IM1983v020n02ABEH001353
  • https://www.mathnet.ru/eng/im/v46/i2/p347
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024