Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1983, Volume 20, Issue 2, Pages 267–301
DOI: https://doi.org/10.1070/IM1983v020n02ABEH001351
(Mi im1617)
 

This article is cited in 1 scientific paper (total in 1 paper)

On functions of generalized bounded variation

T. P. Lukashenko
References:
Abstract: A theorem is proved on passage to a limit under the sign of a Perron–Stieltjes integral, and it is used to obtain several other theorems, one of which is the following.
Theorem. If $\Phi$ and its conjugate $\overline\Phi$ are functions of generalized bounded variation in the narrow sense on $[0,2\pi)$ that do not have discontinuities of the second kind nor removable discontinuities (that is, left-hand and right-hand limits exist at each point, and they do not coincide at a point of discontinuity), then $\Phi$ and $\overline\Phi$ are absolutely continuous functions in the generalized narrow sense on $[0,2\pi)$.
It is shown that the results cannot be strengthened.
Bibliography: 14 titles.
Received: 17.11.1981
Bibliographic databases:
UDC: 517.51
MSC: Primary 26A39, 26A45, 26A46, 42A50; Secondary 26A15, 26A42
Language: English
Original paper language: Russian
Citation: T. P. Lukashenko, “On functions of generalized bounded variation”, Math. USSR-Izv., 20:2 (1983), 267–301
Citation in format AMSBIB
\Bibitem{Luk82}
\by T.~P.~Lukashenko
\paper On functions of generalized bounded variation
\jour Math. USSR-Izv.
\yr 1983
\vol 20
\issue 2
\pages 267--301
\mathnet{http://mi.mathnet.ru//eng/im1617}
\crossref{https://doi.org/10.1070/IM1983v020n02ABEH001351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=651649}
\zmath{https://zbmath.org/?q=an:0537.26004}
Linking options:
  • https://www.mathnet.ru/eng/im1617
  • https://doi.org/10.1070/IM1983v020n02ABEH001351
  • https://www.mathnet.ru/eng/im/v46/i2/p276
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024