Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 5, Pages 995–1030
DOI: https://doi.org/10.1070/im1997v061n05ABEH000161
(Mi im161)
 

This article is cited in 68 scientific papers (total in 68 papers)

The generalized joint spectral radius. A geometric approach

V. Yu. Protasov

M. V. Lomonosov Moscow State University
References:
Abstract: The properties of the joint spectral radius with an arbitrary exponent $p\in[1,+\infty]$ are investigated for a set of finite-dimensional linear operators $A_1,\dots,A_k$
\begin{align*} \widehat\rho_p&=\lim_{n\to\infty}\biggl(\dfrac{1}{k^n}\,\sum_\sigma\|A_{\sigma (1)}\cdots A_{\sigma(n)}\|^p\biggr)^{\frac{1}{pn}},\quad p<\infty, \\ \widehat\rho_{\infty}&=\lim_{n\to\infty}\max_{\sigma}\|A_{\sigma(1)}\cdots A_{\sigma(n)}\|^{\frac{1}{n}}, \end{align*}
where the summation and maximum extend over all maps
$$ \sigma \colon\{1,\dots,n\}\to\{1,\dots,k\}. $$

Using the operation of generalized addition of convex sets, we extend the Dranishnikov–Konyagin theorem on invariant convex bodies, which has hitherto been established only for the case $p=\infty$. The paper concludes with some assertions on the properties of invariant bodies and their relationship to the spectral radius $\widehat \rho_p$. The problem of calculating $\widehat \rho_p$ for even integers $p$ is reduced to determining the usual spectral radius for an appropriate finite-dimensional operator. For other values of $p$, a geometric analogue of the method with a pre-assigned accuracy is constructed and its complexity is estimated.
Received: 28.05.1996
Bibliographic databases:
MSC: 15A18, 90C60, 68Q25
Language: English
Original paper language: Russian
Citation: V. Yu. Protasov, “The generalized joint spectral radius. A geometric approach”, Izv. Math., 61:5 (1997), 995–1030
Citation in format AMSBIB
\Bibitem{Pro97}
\by V.~Yu.~Protasov
\paper The generalized joint spectral radius. A~geometric approach
\jour Izv. Math.
\yr 1997
\vol 61
\issue 5
\pages 995--1030
\mathnet{http://mi.mathnet.ru//eng/im161}
\crossref{https://doi.org/10.1070/im1997v061n05ABEH000161}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1486700}
\zmath{https://zbmath.org/?q=an:0893.15002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071929200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33144455873}
Linking options:
  • https://www.mathnet.ru/eng/im161
  • https://doi.org/10.1070/im1997v061n05ABEH000161
  • https://www.mathnet.ru/eng/im/v61/i5/p99
  • This publication is cited in the following 68 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024