Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1982, Volume 19, Issue 2, Pages 349–357
DOI: https://doi.org/10.1070/IM1982v019n02ABEH001421
(Mi im1599)
 

This article is cited in 10 scientific papers (total in 10 papers)

On discrete weakly sufficient sets in certain spaces of entire functions

V. V. Napalkov
References:
Abstract: This article contains a study of weakly sufficient sets in a certain space of entire functions of exponential type. The following is a consequence of the results obtained: If $D$ is an infinite convex domain, then there exists a system $\{\lambda_k\}_{k=1}^\infty$ (which is minimal in a certain sense) such that any analytic function in $D$ can be represented by a series of the form $\sum a_k\exp\lambda_kz$. For bounded convex domains an analogous result was obtained previously by Leont'ev.
Bibliography: 10 titles.
Received: 29.01.1981
Bibliographic databases:
UDC: 517.5
MSC: Primary 30B50, 30D10, 30D15; Secondary 46A12, 46E10
Language: English
Original paper language: Russian
Citation: V. V. Napalkov, “On discrete weakly sufficient sets in certain spaces of entire functions”, Math. USSR-Izv., 19:2 (1982), 349–357
Citation in format AMSBIB
\Bibitem{Nap81}
\by V.~V.~Napalkov
\paper On~discrete weakly sufficient sets in certain spaces of entire functions
\jour Math. USSR-Izv.
\yr 1982
\vol 19
\issue 2
\pages 349--357
\mathnet{http://mi.mathnet.ru/eng/im1599}
\crossref{https://doi.org/10.1070/IM1982v019n02ABEH001421}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=637617}
\zmath{https://zbmath.org/?q=an:0499.30008|0481.30042}
Linking options:
  • https://www.mathnet.ru/eng/im1599
  • https://doi.org/10.1070/IM1982v019n02ABEH001421
  • https://www.mathnet.ru/eng/im/v45/i5/p1088
  • This publication is cited in the following 10 articles:
    1. R. A. Bashmakov, K. P. Isaev, R. S. Yulmukhametov, “Representing Systems of Exponentials in Weight Subspaces $H(D)$”, J. Math. Sci. (N. Y.), 252:3 (2021), 302–318  mathnet  crossref  mathscinet
    2. K. P. Isaev, K. V. Trounov, R. S. Yulmukhametov, “Representation of functions in locally convex subspaces of $A^\infty (D)$ by series of exponentials”, Ufa Math. J., 9:3 (2017), 48–60  mathnet  crossref  isi  elib
    3. A. V. Abanin, V. A. Varziev, “Sufficient sets in weighted Fréchet spaces of entire functions”, Siberian Math. J., 54:4 (2013), 575–587  mathnet  crossref  mathscinet  isi
    4. V. V. Napalkov, A. A. Nuyatov, “The multipoint de la Vallée-Poussin problem for a convolution operator”, Sb. Math., 203:2 (2012), 224–233  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Nuyatov A.A., “Usloviya razreshimosti mnogotochechnoi zadachi valle pussena dlya operatorov svertki”, Vestnik nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2012, 202–205 Solvability conditions of de la vall  elib
    6. V. V. Napalkov, “Complex Analysis and the Cauchy Problem for Convolution Operators”, Proc. Steklov Inst. Math., 235 (2001), 158–161  mathnet  mathscinet  zmath
    7. A. B. Sekerin, “On the representation of analytic functions of several variables by exponential series”, Russian Acad. Sci. Izv. Math., 40:3 (1993), 503–527  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. V. V. Napalkov, A. W. Komarov, “On the expansion of analytic functions in a series of elementary solutions of a convolution equation”, Math. USSR-Sb., 69:2 (1991), 597–605  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    9. A. B. Sekerin, “On sufficient sets in spaces of entire functions of several variables”, Math. USSR-Sb., 64:1 (1989), 263–276  mathnet  crossref  mathscinet  zmath
    10. Yu. F. Korobeinik, “Inductive and projective topologies. Sufficient sets and representing systems”, Math. USSR-Izv., 28:3 (1987), 529–554  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:595
    Russian version PDF:153
    English version PDF:18
    References:86
    First page:1
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025