Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1982, Volume 19, Issue 2, Pages 349–357
DOI: https://doi.org/10.1070/IM1982v019n02ABEH001421
(Mi im1599)
 

This article is cited in 10 scientific papers (total in 10 papers)

On discrete weakly sufficient sets in certain spaces of entire functions

V. V. Napalkov
References:
Abstract: This article contains a study of weakly sufficient sets in a certain space of entire functions of exponential type. The following is a consequence of the results obtained: If $D$ is an infinite convex domain, then there exists a system $\{\lambda_k\}_{k=1}^\infty$ (which is minimal in a certain sense) such that any analytic function in $D$ can be represented by a series of the form $\sum a_k\exp\lambda_kz$. For bounded convex domains an analogous result was obtained previously by Leont'ev.
Bibliography: 10 titles.
Received: 29.01.1981
Bibliographic databases:
UDC: 517.5
MSC: Primary 30B50, 30D10, 30D15; Secondary 46A12, 46E10
Language: English
Original paper language: Russian
Citation: V. V. Napalkov, “On discrete weakly sufficient sets in certain spaces of entire functions”, Math. USSR-Izv., 19:2 (1982), 349–357
Citation in format AMSBIB
\Bibitem{Nap81}
\by V.~V.~Napalkov
\paper On~discrete weakly sufficient sets in certain spaces of entire functions
\jour Math. USSR-Izv.
\yr 1982
\vol 19
\issue 2
\pages 349--357
\mathnet{http://mi.mathnet.ru//eng/im1599}
\crossref{https://doi.org/10.1070/IM1982v019n02ABEH001421}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=637617}
\zmath{https://zbmath.org/?q=an:0499.30008|0481.30042}
Linking options:
  • https://www.mathnet.ru/eng/im1599
  • https://doi.org/10.1070/IM1982v019n02ABEH001421
  • https://www.mathnet.ru/eng/im/v45/i5/p1088
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:554
    Russian version PDF:146
    English version PDF:12
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024