Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1982, Volume 18, Issue 1, Pages 1–17
DOI: https://doi.org/10.1070/IM1982v018n01ABEH001375
(Mi im1545)
 

This article is cited in 63 scientific papers (total in 63 papers)

On integral inequalities for trigonometric polynomials and their derivatives

V. V. Arestov
References:
Abstract: Let $\Phi^+$ be the set of nondecreasing functions $\varphi$ defined on $(0,\infty)$ which admit a representation $\varphi(u)=\psi(\ln u)$, where the function $\psi$ is convex (below) on $(-\infty,\infty)$. To the class $\Phi^+$ belong, for example, the functions $\ln u$, $\ln^+u$, $u^p$ when $p>0$, and also any function $\varphi$ which is convex on $(0,\infty)$. In this paper it is shown, in particular, that if $\varphi\in\Phi^+$, then for any trigonometric polynomial $T_n$ of order $n$ the following inequality holds for all natural numbers $r$:
$$ \int_0^{2\pi}\varphi\bigl(\bigl|T_n^{(r)}(t)|\bigr)\,dt\leqslant\int_0^{2\pi}\varphi\bigl(n^r\bigl|T_n(t)\bigr|\bigr)\,dt. $$
This inequality may be considered a generalization of the inequalities of S. N. Bernstein and A. Zygmund.
Bibliography: 16 titles.
Received: 24.09.1978
Bibliographic databases:
UDC: 517.518
MSC: 42A05
Language: English
Original paper language: Russian
Citation: V. V. Arestov, “On integral inequalities for trigonometric polynomials and their derivatives”, Math. USSR-Izv., 18:1 (1982), 1–17
Citation in format AMSBIB
\Bibitem{Are81}
\by V.~V.~Arestov
\paper On~integral inequalities for trigonometric polynomials and their derivatives
\jour Math. USSR-Izv.
\yr 1982
\vol 18
\issue 1
\pages 1--17
\mathnet{http://mi.mathnet.ru//eng/im1545}
\crossref{https://doi.org/10.1070/IM1982v018n01ABEH001375}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=607574}
\zmath{https://zbmath.org/?q=an:0538.42001|0517.42001}
Linking options:
  • https://www.mathnet.ru/eng/im1545
  • https://doi.org/10.1070/IM1982v018n01ABEH001375
  • https://www.mathnet.ru/eng/im/v45/i1/p3
  • This publication is cited in the following 63 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025