Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1985, Volume 25, Issue 2, Pages 315–357
DOI: https://doi.org/10.1070/IM1985v025n02ABEH001284
(Mi im1505)
 

This article is cited in 4 scientific papers (total in 4 papers)

Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. I, II

A. G. Eliseev
References:
Abstract: A method is studied for constructing a regularized asymptotic expression for the solution of a Cauchy problem in the case of a multiple spectrum. The paper consists of two parts. The first part deals with the case when the operator is similar to a single Jordan cell, and the second with the case when the operator is similar to an operator with several Jordan cells. In both cases the structure matrix does not have degeneracies. The structure of a fundamental system of solutions is presented.
Bibliography: 13 titles.
Received: 22.01.1982
Bibliographic databases:
UDC: 517.91/93
MSC: Primary 34A10, 34E05, 34E15, 34G10; Secondary 47A53, 47A55
Language: English
Original paper language: Russian
Citation: A. G. Eliseev, “Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. I, II”, Math. USSR-Izv., 25:2 (1985), 315–357
Citation in format AMSBIB
\Bibitem{Eli84}
\by A.~G.~Eliseev
\paper Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator.~I,~II
\jour Math. USSR-Izv.
\yr 1985
\vol 25
\issue 2
\pages 315--357
\mathnet{http://mi.mathnet.ru/eng/im1505}
\crossref{https://doi.org/10.1070/IM1985v025n02ABEH001284}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=764307}
\zmath{https://zbmath.org/?q=an:0604.34033}
Linking options:
  • https://www.mathnet.ru/eng/im1505
  • https://doi.org/10.1070/IM1985v025n02ABEH001284
  • https://www.mathnet.ru/eng/im/v48/i5/p999
  • This publication is cited in the following 4 articles:
    1. K. I. Chernyshov, “Cauchy operator of a non-stationary linear differential equation with a small parameter at the derivative”, Sb. Math., 196:8 (2005), 1165–1208  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. A. M. Dzhuraev, “Sovremennoe sostoyanie teorii singulyarnykh vozmuschenii”, Trudy Vserossiiskoi nauchnoi konferentsii (26–28 maya 2004 g.). Chast 3, Differentsialnye uravneniya i kraevye zadachi, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2004, 79–82  mathnet  elib
    3. S. A. Lomov, A. G. Eliseev, “Asymptotic integration of singularly perturbed problems”, Russian Math. Surveys, 43:3 (1988), 1–63  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. A. G. Eliseev, “Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III”, Math. USSR-Izv., 25:3 (1985), 475–500  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:435
    Russian version PDF:155
    English version PDF:46
    References:100
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025