Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1985, Volume 25, Issue 2, Pages 301–313
DOI: https://doi.org/10.1070/IM1985v025n02ABEH001282
(Mi im1504)
 

This article is cited in 8 scientific papers (total in 8 papers)

Moduli of stable vector bundles of rank 2 on $P_3$ with fixed spectrum

V. K. Vedernikov
References:
Abstract: Moduli of stable rank 2 vector bundles on the three-dimensional complex projective space are studied. Using the notion of spectrum, two series of components in the moduli scheme of such bundles are pointed out. Each component is an irreducible rational variety, and asymptotically the dimension of the components behaves as a quadratic or cubic polynomial. The monadic realization of a generic bundle on the components is given by a rank one monad.
Bibliography: 5 titles.
Received: 11.04.1983
Bibliographic databases:
UDC: 513.6
MSC: Primary 14D20, 14F05; Secondary 14H10
Language: English
Original paper language: Russian
Citation: V. K. Vedernikov, “Moduli of stable vector bundles of rank 2 on $P_3$ with fixed spectrum”, Math. USSR-Izv., 25:2 (1985), 301–313
Citation in format AMSBIB
\Bibitem{Ved84}
\by V.~K.~Vedernikov
\paper Moduli of stable vector bundles of rank~2 on $P_3$ with fixed spectrum
\jour Math. USSR-Izv.
\yr 1985
\vol 25
\issue 2
\pages 301--313
\mathnet{http://mi.mathnet.ru/eng/im1504}
\crossref{https://doi.org/10.1070/IM1985v025n02ABEH001282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=764306}
\zmath{https://zbmath.org/?q=an:0589.14017}
Linking options:
  • https://www.mathnet.ru/eng/im1504
  • https://doi.org/10.1070/IM1985v025n02ABEH001282
  • https://www.mathnet.ru/eng/im/v48/i5/p986
  • This publication is cited in the following 8 articles:
    1. D. A. Vasil'ev, A. S. Tikhomirov, “Moduli of rank $2$ semistable sheaves on rational Fano threefolds of the main series”, Sb. Math., 215:10 (2024), 1269–1320  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. A. A. Kytmanov, N. N. Osipov, S. A. Tikhomirov, T. V. Zykova, “O chislovykh kharakteristikakh nekotorykh rassloenii i ikh prostranstva modulei na $\mathbb{P}^3$”, Sib. elektron. matem. izv., 19:2 (2022), 415–425  mathnet  crossref
    3. Charles Almeida, Marcos Jardim, Alexander S. Tikhomirov, “Irreducible components of the moduli space of rank 2 sheaves of odd determinant on projective space”, Advances in Mathematics, 402 (2022), 108363  crossref
    4. A. S. Tikhomirov, S. A. Tikhomirov, D. A. Vassiliev, “Construction of stable rank $2$ bundles on $\mathbb{P}^3$ via symplectic bundles”, Siberian Math. J., 60:2 (2019), 343–358  mathnet  crossref  crossref  isi  elib
    5. Kytmanov A.A. Tikhomirov A.S. Tikhomirov S.A., “Series of Rational Moduli Components of Stable Rank Two Vector Bundles on P-3”, Sel. Math.-New Ser., 25:2 (2019), UNSP 29  crossref  mathscinet  isi  scopus
    6. N. N. Osipov, S. A. Tikhomirov, “On the number of Vedernikov–Ein irreducible components of the moduli space of stable rank 2 bundles on the projective space”, Siberian Math. J., 59:1 (2018), 107–112  mathnet  crossref  crossref  isi  elib
    7. A. A. Kytmanov, N. N. Osipov, S. A. Tikhomirov, “Finding ein components in the moduli spaces of stable rank $2$ bundles on the projective $3$-space”, Siberian Math. J., 57:2 (2016), 322–329  mathnet  crossref  crossref  mathscinet  isi  elib
    8. S. A. Tikhomirov, “Families of stable bundles of rank 2 with $c_1=-1$ on the space $\mathbb P^3$”, Siberian Math. J., 55:6 (2014), 1137–1143  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:387
    Russian version PDF:105
    English version PDF:35
    References:53
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025