Abstract:
Complete integrability in the sense of Liouville is established for the rotation of an arbitrary rigid body about a fixed point in a Newtonian field with an arbitrary homogeneous quadratic potential. Explicit formulas, which express the angular velocity of the rigid body rotation in terms of theta functions on Riemannian surfaces, are obtained. A series of cases is found in which the Euler equations on the Lie algebra $\operatorname{SO}(4)$ are integrable. A model of pulsar rotation, the dynamics of which are described by Euler equations on the Lie algebra $\operatorname{SO}(3)\oplus E_3$, is investigated.
Bibliography: 53 titles.
Citation:
O. I. Bogoyavlenskii, “Integrable Euler equations on Lie algebras arising in problems of mathematical physics”, Math. USSR-Izv., 25:2 (1985), 207–257
This publication is cited in the following 37 articles:
V. D. Irtegov, T. N. Titorenko, “Ob odnom podkhode k kachestvennomu issledovaniyu nelineinykh dinamicheskikh sistem”, Sib. zhurn. vychisl. matem., 25:1 (2022), 59–75
Dmytro Leshchenko, Sergey V Ershkov, Tetiana A Kozachenko, “Evolution of motion of a rigid body similar to Lagrange top under the influence of slowly time varying torques”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236:22 (2022), 10879
Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65
P. E. Ryabov, A. Yu. Savushkin, “Fazovaya topologiya volchka Kovalevskoi – Sokolova”, Nelineinaya dinam., 11:2 (2015), 287–317
A. V. Bolsinov, “Argument shift method and sectional operators: applications to differential geometry”, J. Math. Sci., 225:4 (2017), 536–554
S.S.. Zub, “Stable orbital motion of magnetic dipole in the field of permanent magnets”, Physica D: Nonlinear Phenomena, 2014
Xiang Zhang, “Comment on “On the polynomial integrability of the Kirchoff equations, Physica D 241 (2012) 1417–1420””, Physica D: Nonlinear Phenomena, 2013
P. E. Ryabov, “Phase topology of one irreducible integrable problem in the dynamics
of a rigid body”, Theoret. and Math. Phys., 176:2 (2013), 1000–1015
Valentin Irtegov, Tatyana Titorenko, Lecture Notes in Computer Science, 8136, Computer Algebra in Scientific Computing, 2013, 179
P. E. Ryabov, M. P. Kharlamov, “Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field”, Sb. Math., 203:2 (2012), 257–287
M. P. Kharlamov, P. E. Ryabov, “Net diagrams for the Fomenko invariant in the integrable system with three degrees of freedom”, Dokl. Math, 86:3 (2012), 839
Kharlamov M.P., Ryabov P.E., “Setevye diagrammy dlya invarianta fomenko v integriruemoi sisteme s tremya stepenyami svobody”, Doklady akademii nauk, 447:5 (2012), 499–499
M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: II. Prilozheniya k novym algebraicheskim resheniyam”, Nelineinaya dinam., 7:1 (2011), 25–51
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Topology and stability of integrable systems”, Russian Math. Surveys, 65:2 (2010), 259–318
P. E. Ryabov, M. P. Kharlamov, “Analiticheskaya klassifikatsiya osobennostei obobschennogo volchka Kovalevskoi”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2010, no. 2, 19–28
M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805
Sagar Chakraborty, J. K. Bhattacharjee, “Effects of nondenumerable fixed points in finite dynamical systems”, Chaos, 18:1 (2008), 013124
D. B. Zot'ev, “Contact degeneracies of closed 2-forms”, Sb. Math., 198:4 (2007), 491–520
D. B. Zot'ev, “Phase topology of Appelrot class I of Kowalewski top in a magnetic field”, J. Math. Sci., 149:1 (2008), 922–946
D. B. Zot'ev, “Symplectic Geometry of Manifolds with Almost Nowhere Vanishing Closed 2-Form”, Math. Notes, 76:1 (2004), 62–72