Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1985, Volume 25, Issue 2, Pages 207–257
DOI: https://doi.org/10.1070/IM1985v025n02ABEH001278
(Mi im1502)
 

This article is cited in 37 scientific papers (total in 37 papers)

Integrable Euler equations on Lie algebras arising in problems of mathematical physics

O. I. Bogoyavlenskii
References:
Abstract: Complete integrability in the sense of Liouville is established for the rotation of an arbitrary rigid body about a fixed point in a Newtonian field with an arbitrary homogeneous quadratic potential. Explicit formulas, which express the angular velocity of the rigid body rotation in terms of theta functions on Riemannian surfaces, are obtained. A series of cases is found in which the Euler equations on the Lie algebra $\operatorname{SO}(4)$ are integrable. A model of pulsar rotation, the dynamics of which are described by Euler equations on the Lie algebra $\operatorname{SO}(3)\oplus E_3$, is investigated.
Bibliography: 53 titles.
Received: 29.03.1984
Bibliographic databases:
Document Type: Article
UDC: 517.91
MSC: Primary 58F07; Secondary 58F05, 70E99, 76W05, 83F05, 82A45, 22E70, 34C35, 3
Language: English
Original paper language: Russian
Citation: O. I. Bogoyavlenskii, “Integrable Euler equations on Lie algebras arising in problems of mathematical physics”, Math. USSR-Izv., 25:2 (1985), 207–257
Citation in format AMSBIB
\Bibitem{Bog84}
\by O.~I.~Bogoyavlenskii
\paper Integrable Euler equations on Lie algebras arising in problems of mathematical physics
\jour Math. USSR-Izv.
\yr 1985
\vol 25
\issue 2
\pages 207--257
\mathnet{http://mi.mathnet.ru/eng/im1502}
\crossref{https://doi.org/10.1070/IM1985v025n02ABEH001278}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=764304}
\zmath{https://zbmath.org/?q=an:0583.58012}
Linking options:
  • https://www.mathnet.ru/eng/im1502
  • https://doi.org/10.1070/IM1985v025n02ABEH001278
  • https://www.mathnet.ru/eng/im/v48/i5/p883
  • This publication is cited in the following 37 articles:
    1. V. D. Irtegov, T. N. Titorenko, “Ob odnom podkhode k kachestvennomu issledovaniyu nelineinykh dinamicheskikh sistem”, Sib. zhurn. vychisl. matem., 25:1 (2022), 59–75  mathnet  crossref
    2. Dmytro Leshchenko, Sergey V Ershkov, Tetiana A Kozachenko, “Evolution of motion of a rigid body similar to Lagrange top under the influence of slowly time varying torques”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236:22 (2022), 10879  crossref
    3. Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65  mathnet  crossref  mathscinet  zmath
    4. P. E. Ryabov, A. Yu. Savushkin, “Fazovaya topologiya volchka Kovalevskoi – Sokolova”, Nelineinaya dinam., 11:2 (2015), 287–317  mathnet
    5. A. V. Bolsinov, “Argument shift method and sectional operators: applications to differential geometry”, J. Math. Sci., 225:4 (2017), 536–554  mathnet  crossref  mathscinet  elib
    6. S.S.. Zub, “Stable orbital motion of magnetic dipole in the field of permanent magnets”, Physica D: Nonlinear Phenomena, 2014  crossref
    7. Xiang Zhang, “Comment on “On the polynomial integrability of the Kirchoff equations, Physica D 241 (2012) 1417–1420””, Physica D: Nonlinear Phenomena, 2013  crossref
    8. P. E. Ryabov, “Phase topology of one irreducible integrable problem in the dynamics of a rigid body”, Theoret. and Math. Phys., 176:2 (2013), 1000–1015  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. Valentin Irtegov, Tatyana Titorenko, Lecture Notes in Computer Science, 8136, Computer Algebra in Scientific Computing, 2013, 179  crossref
    10. P. E. Ryabov, M. P. Kharlamov, “Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field”, Sb. Math., 203:2 (2012), 257–287  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. M. P. Kharlamov, P. E. Ryabov, “Net diagrams for the Fomenko invariant in the integrable system with three degrees of freedom”, Dokl. Math, 86:3 (2012), 839  crossref
    12. Kharlamov M.P., Ryabov P.E., “Setevye diagrammy dlya invarianta fomenko v integriruemoi sisteme s tremya stepenyami svobody”, Doklady akademii nauk, 447:5 (2012), 499–499  elib
    13. M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: II. Prilozheniya k novym algebraicheskim resheniyam”, Nelineinaya dinam., 7:1 (2011), 25–51  mathnet
    14. A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Topology and stability of integrable systems”, Russian Math. Surveys, 65:2 (2010), 259–318  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    15. P. E. Ryabov, M. P. Kharlamov, “Analiticheskaya klassifikatsiya osobennostei obobschennogo volchka Kovalevskoi”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2010, no. 2, 19–28  mathnet  elib
    16. M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805  mathnet
    17. Sagar Chakraborty, J. K. Bhattacharjee, “Effects of nondenumerable fixed points in finite dynamical systems”, Chaos, 18:1 (2008), 013124  crossref  mathscinet  isi  elib
    18. D. B. Zot'ev, “Contact degeneracies of closed 2-forms”, Sb. Math., 198:4 (2007), 491–520  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    19. D. B. Zot'ev, “Phase topology of Appelrot class I of Kowalewski top in a magnetic field”, J. Math. Sci., 149:1 (2008), 922–946  mathnet  crossref  mathscinet  zmath  elib
    20. D. B. Zot'ev, “Symplectic Geometry of Manifolds with Almost Nowhere Vanishing Closed 2-Form”, Math. Notes, 76:1 (2004), 62–72  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1056
    Russian version PDF:699
    English version PDF:66
    References:96
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025