Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1987, Volume 28, Issue 2, Pages 275–303
DOI: https://doi.org/10.1070/IM1987v028n02ABEH000882
(Mi im1480)
 

This article is cited in 19 scientific papers (total in 19 papers)

Quadratic conditions for a Pontryagin minimum in an optimum control problem linear in the control. I: A decoding theorem

A. V. Dmitruk
References:
Abstract: The general optimum control problem considered here is linear in the control and without constraints on the control. Quadratic (i.e., second-order) necessary and sufficient conditions are given for the problem to have a minimum in the class of variations bounded in modulus by an arbitrary constant and having small integral. These conditions are stronger than the previously known conditions for a weak minimum, and, like the latter conditions, constitute an adjoining pair, i.e., the sufficient condition differs from the necessary condition only in the strengthening of an inequality.
Bibliography: 17 titles.
Received: 09.01.1984
Bibliographic databases:
UDC: 517.97
MSC: Primary 49B10; Secondary 34H05
Language: English
Original paper language: Russian
Citation: A. V. Dmitruk, “Quadratic conditions for a Pontryagin minimum in an optimum control problem linear in the control. I: A decoding theorem”, Math. USSR-Izv., 28:2 (1987), 275–303
Citation in format AMSBIB
\Bibitem{Dmi86}
\by A.~V.~Dmitruk
\paper Quadratic conditions for a~Pontryagin minimum in an optimum control problem linear in the control.~I: A~decoding theorem
\jour Math. USSR-Izv.
\yr 1987
\vol 28
\issue 2
\pages 275--303
\mathnet{http://mi.mathnet.ru//eng/im1480}
\crossref{https://doi.org/10.1070/IM1987v028n02ABEH000882}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=842584}
\zmath{https://zbmath.org/?q=an:0682.49020|0611.49014}
Linking options:
  • https://www.mathnet.ru/eng/im1480
  • https://doi.org/10.1070/IM1987v028n02ABEH000882
  • https://www.mathnet.ru/eng/im/v50/i2/p284
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024