Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1987, Volume 28, Issue 1, Pages 67–78
DOI: https://doi.org/10.1070/IM1987v028n01ABEH000867
(Mi im1471)
 

This article is cited in 1 scientific paper (total in 1 paper)

The number of integers representable as a sum of two squares on small intervals

V. A. Plaksin
References:
Abstract: Let $M(m,h)$ denote the number of natural numbers in the interval $(m;m+h)$ which are representable as a sum of two squares. Under the condition $n>\ln^{42,5+\varepsilon}X$, $\varepsilon>0$, a best possible lower bound for $M(m,h)$ is established for almost all $m\leqslant X$ (for all but $o(X)$).
Bibliography: 14 titles.
Received: 22.11.1984
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1986, Volume 50, Issue 1, Pages 67–78
Bibliographic databases:
UDC: 511
MSC: Primary 11N25; Secondary 11E25, 11N35, 11N37
Language: English
Original paper language: Russian
Citation: V. A. Plaksin, “The number of integers representable as a sum of two squares on small intervals”, Izv. Akad. Nauk SSSR Ser. Mat., 50:1 (1986), 67–78; Math. USSR-Izv., 28:1 (1987), 67–78
Citation in format AMSBIB
\Bibitem{Pla86}
\by V.~A.~Plaksin
\paper The number of integers representable as a~sum of two squares on small intervals
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1986
\vol 50
\issue 1
\pages 67--78
\mathnet{http://mi.mathnet.ru/im1471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=835566}
\zmath{https://zbmath.org/?q=an:0615.10062|0597.10045}
\transl
\jour Math. USSR-Izv.
\yr 1987
\vol 28
\issue 1
\pages 67--78
\crossref{https://doi.org/10.1070/IM1987v028n01ABEH000867}
Linking options:
  • https://www.mathnet.ru/eng/im1471
  • https://doi.org/10.1070/IM1987v028n01ABEH000867
  • https://www.mathnet.ru/eng/im/v50/i1/p67
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:328
    Russian version PDF:109
    English version PDF:16
    References:36
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024