|
On some representing systems in spaces of analytic functions
Yu. F. Korobeinik
Abstract:
Let $E_\rho(z)$ be the Mittag-Leffler function. This article investigates the connection between “representing” properties for systems $\mathscr E_{\rho,\Lambda}=\{E_{\rho}(\lambda_kz)\}^{\infty}_{k=1}$ and $\mathscr E^{(n)}_{\rho,\Lambda}=\{E_\rho(\lambda_kz),zE_\rho(\lambda_kz),\dots,z^nE_\rho(\lambda_kz)\}^{\infty}_{k=1}$, $n\geqslant1$, as well as for systems $\mathscr E^1_{\rho,\Lambda}=\{E_\rho(\lambda_{k,1}z)\}^\infty_{k=1}$, $\mathscr E^2_{\rho,\Lambda}=\{E_\rho(\lambda_{k,2}z)\}^\infty_{k=1}$, and $\mathscr E^3_{\rho,\Lambda}=\mathscr E^1_{\rho,\Lambda}\cup\mathscr E^2_{\rho,\Lambda}$ in spaces of analytic functions.
Bibliography: 18 titles.
Received: 25.06.1982
Citation:
Yu. F. Korobeinik, “On some representing systems in spaces of analytic functions”, Izv. Akad. Nauk SSSR Ser. Mat., 47:6 (1983), 1224–1247; Math. USSR-Izv., 23:3 (1984), 487–509
Linking options:
https://www.mathnet.ru/eng/im1461https://doi.org/10.1070/IM1984v023n03ABEH001782 https://www.mathnet.ru/eng/im/v47/i6/p1224
|
Statistics & downloads: |
Abstract page: | 365 | Russian version PDF: | 109 | English version PDF: | 19 | References: | 80 | First page: | 1 |
|