|
This article is cited in 24 scientific papers (total in 26 papers)
On the zeros of the function $\zeta(s)$ on short intervals of the critical line
A. A. Karatsuba
Abstract:
It is proved that for any $\varepsilon>0$ there exists $c=c(\varepsilon)>0$ such that for $T\geqslant T_0(\varepsilon)>0$ and $H=T^{27/82+\varepsilon}$ we have $N_0(T+H)-N_0(T)\geqslant cH\ln T$, where $N_0(T)$ is the number of odd order zeros of $\zeta(\frac12+it)$ in the interval $(0,T)$.
Bibliography: 12 titles.
Received: 17.02.1984
Citation:
A. A. Karatsuba, “On the zeros of the function $\zeta(s)$ on short intervals of the critical line”, Izv. Akad. Nauk SSSR Ser. Mat., 48:3 (1984), 569–584; Math. USSR-Izv., 24:3 (1985), 523–537
Linking options:
https://www.mathnet.ru/eng/im1456https://doi.org/10.1070/IM1985v024n03ABEH001246 https://www.mathnet.ru/eng/im/v48/i3/p569
|
Statistics & downloads: |
Abstract page: | 498 | Russian version PDF: | 205 | English version PDF: | 11 | References: | 44 | First page: | 2 |
|