Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1984, Volume 23, Issue 2, Pages 277–305
DOI: https://doi.org/10.1070/IM1984v023n02ABEH001772
(Mi im1434)
 

This article is cited in 15 scientific papers (total in 15 papers)

Pseudodifferential operators and a canonical operator in general symplectic manifolds

M. V. Karasev, V. P. Maslov
References:
Abstract: A calculus of $h$-pseudodifferential operators with symbols on $\mathfrak X$ is defined modulo $O(h^2)$ on a closed symplectic manifold $(\mathfrak X,\omega)$ under the condition that $[\omega]/(2\pi h)-\varkappa/4 \in H^2(\mathfrak X,\mathbf Z)$. The class $\varkappa\in H^2(\mathfrak X,\mathbf Z)$ is described. On Lagrangian submanifolds $\Lambda\subset\mathfrak X$ a class in $H^1(\Lambda,\mathbf U(1))$ obstructing the definition of a canonical operator on $\Lambda$ is found. It is shown that an analogus calculus of pseudodifferential operators can be constructed with respect to homogeneity from an action of the group $\mathbf R_+$ on $\mathfrak X$.
Bibliography: 22 titles.
Received: 14.06.1982
Bibliographic databases:
UDC: 517.9
MSC: Primary 35S05, 58F05, 58G15; Secondary 47G05, 53C15, 55N30, 55S35, 58F06, 70D10, 70G35
Language: English
Original paper language: Russian
Citation: M. V. Karasev, V. P. Maslov, “Pseudodifferential operators and a canonical operator in general symplectic manifolds”, Math. USSR-Izv., 23:2 (1984), 277–305
Citation in format AMSBIB
\Bibitem{KarMas83}
\by M.~V.~Karasev, V.~P.~Maslov
\paper Pseudodifferential operators and a~canonical operator in general symplectic manifolds
\jour Math. USSR-Izv.
\yr 1984
\vol 23
\issue 2
\pages 277--305
\mathnet{http://mi.mathnet.ru//eng/im1434}
\crossref{https://doi.org/10.1070/IM1984v023n02ABEH001772}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=718414}
\zmath{https://zbmath.org/?q=an:0554.58048|0538.58035}
Linking options:
  • https://www.mathnet.ru/eng/im1434
  • https://doi.org/10.1070/IM1984v023n02ABEH001772
  • https://www.mathnet.ru/eng/im/v47/i5/p999
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024