Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1995, Volume 59, Issue 2, Pages 333–351
DOI: https://doi.org/10.1070/IM1995v059n02ABEH000014
(Mi im14)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the decomposition of automorphisms of free modules into simple factors

V. G. Bardakov
References:
Abstract: We study decompositions of automorphisms of various free modules into products of transvections and dilations. In particular, for a free $\mathbb Z$-module $M=\mathbb Z^n$ (where $n\geqslant 3$) we show that any automorphism $\sigma\in\operatorname{GL}_n(M)$ can be expressed as a product of not more than $2n+5$ transvections and one simple transformation which is a transvection if $\sigma\in\operatorname{SL}_n(M)$ and a dilation otherwise. As a corollary we obtain that for $n\geqslant 3$ the width of the group $\operatorname{SL}_n(\mathbb Z)$, with respect to the set of commutators, does not exceed 10.
Received: 17.12.1992
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1995, Volume 59, Issue 2, Pages 109–128
Bibliographic databases:
MSC: 20F28
Language: English
Original paper language: Russian
Citation: V. G. Bardakov, “On the decomposition of automorphisms of free modules into simple factors”, Izv. Math., 59:2 (1995), 333–351
Citation in format AMSBIB
\Bibitem{Bar95}
\by V.~G.~Bardakov
\paper On the decomposition of automorphisms of free modules into simple factors
\jour Izv. Math.
\yr 1995
\vol 59
\issue 2
\pages 333--351
\mathnet{http://mi.mathnet.ru//eng/im14}
\crossref{https://doi.org/10.1070/IM1995v059n02ABEH000014}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1337161}
\zmath{https://zbmath.org/?q=an:0896.20031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ88800005}
Linking options:
  • https://www.mathnet.ru/eng/im14
  • https://doi.org/10.1070/IM1995v059n02ABEH000014
  • https://www.mathnet.ru/eng/im/v59/i2/p109
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:381
    Russian version PDF:136
    English version PDF:14
    References:83
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024