Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1984, Volume 22, Issue 2, Pages 309–327
DOI: https://doi.org/10.1070/IM1984v022n02ABEH001445
(Mi im1394)
 

A criterion for boundedness of singular integral operators with complicated singularities

A. G. Sergeev
References:
Abstract: Singular integral operators acting on the space of (essentially) bounded functions defined on a smooth submanifold of $\mathbf R^n$ are considered. The singularities of the integrals given by the zeros of functions composing the integrand lie on smooth submanifolds. The basic result is as follows: if these submanifolds satisfy certain conditions of nondegeneracy type and the integral operator has no formal singularities (i.e., certain relations between the orders of the integrands and the dimensions of the manifolds of singularities are satisfied), then the singular integral operator is bounded on the space considered.
Bibliography: 4 titles.
Received: 25.05.1982
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: Primary 47G05; Secondary 05C99
Language: English
Original paper language: Russian
Citation: A. G. Sergeev, “A criterion for boundedness of singular integral operators with complicated singularities”, Math. USSR-Izv., 22:2 (1984), 309–327
Citation in format AMSBIB
\Bibitem{Ser83}
\by A.~G.~Sergeev
\paper A~criterion for boundedness of singular integral operators with complicated singularities
\jour Math. USSR-Izv.
\yr 1984
\vol 22
\issue 2
\pages 309--327
\mathnet{http://mi.mathnet.ru//eng/im1394}
\crossref{https://doi.org/10.1070/IM1984v022n02ABEH001445}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=697299}
\zmath{https://zbmath.org/?q=an:0532.45009|0521.45010}
Linking options:
  • https://www.mathnet.ru/eng/im1394
  • https://doi.org/10.1070/IM1984v022n02ABEH001445
  • https://www.mathnet.ru/eng/im/v47/i2/p335
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:465
    Russian version PDF:100
    English version PDF:18
    References:70
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024