Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1984, Volume 22, Issue 2, Pages 227–245
DOI: https://doi.org/10.1070/IM1984v022n02ABEH001440
(Mi im1388)
 

This article is cited in 2 scientific papers (total in 2 papers)

Extension of functions that are traces on an arbitrary subset of the line of functions with given second modulus of continuity

V. K. Dzyadyk, I. A. Shevchuk
References:
Abstract: Let $\varphi(t)$ be an arbitrary function of the type of a second modulus of continuity. It is proved that if $E\subset\mathbf R^1$, $f(x)\colon E\to\mathbf R^1$ is a given function, and
\begin{equation} \biggl|f(x_2)-\frac{x_2-x_3}{x_1-x_3}f(x_1)-\frac{x_2-x_1}{x_3-x_1}f(x_3)\biggr| \leqslant2|x_1-x_2|\int_{|x_1-x_2|}^{2|x_1-x_3|}s^{-2}\varphi(s)\,ds \end{equation}
for any triple of points $x_1\in E$, $x_3\in E$ and $x_2\in E\cap(x_1,x_3)$, then this function is the trace of some continuous function $\overline f\colon\mathbf R^1\to\mathbf R^1$ for which $\omega_2(\overline f,t)\leqslant A\varphi(t)$, where $A$ is an absolute constant. The function $\overline f$ is constructed by a formula which uses only the values of $\overline f$ on $E$ and the values of $\varphi(t)$. The converse of this assertion, namely, that condition (1) holds for each continuous function $f\colon\mathbf R^1\to\mathbf R^1$ on any set $E\subset \mathbf R^1$, can be verified without difficulty.
Bibliography: 7 titles.
Received: 11.01.1982
Bibliographic databases:
UDC: 517.51
MSC: 26A15, 46E35
Language: English
Original paper language: Russian
Citation: V. K. Dzyadyk, I. A. Shevchuk, “Extension of functions that are traces on an arbitrary subset of the line of functions with given second modulus of continuity”, Math. USSR-Izv., 22:2 (1984), 227–245
Citation in format AMSBIB
\Bibitem{DzyShe83}
\by V.~K.~Dzyadyk, I.~A.~Shevchuk
\paper Extension of functions that are traces on an arbitrary subset of the line of functions with given second modulus of continuity
\jour Math. USSR-Izv.
\yr 1984
\vol 22
\issue 2
\pages 227--245
\mathnet{http://mi.mathnet.ru//eng/im1388}
\crossref{https://doi.org/10.1070/IM1984v022n02ABEH001440}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=697295}
\zmath{https://zbmath.org/?q=an:0598.26010}
Linking options:
  • https://www.mathnet.ru/eng/im1388
  • https://doi.org/10.1070/IM1984v022n02ABEH001440
  • https://www.mathnet.ru/eng/im/v47/i2/p248
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:309
    Russian version PDF:108
    English version PDF:17
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024