Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1984, Volume 22, Issue 1, Pages 67–97
DOI: https://doi.org/10.1070/IM1984v022n01ABEH001434
(Mi im1382)
 

This article is cited in 56 scientific papers (total in 57 papers)

Boundedly nonhomogeneous elliptic and parabolic equations in a domain

N. V. Krylov
References:
Abstract: In this paper the Dirichlet problem is studied for equations of the form $0=F(u_{x^ix^j},u_{x^i},u,1,x)$ and also the first boundary value problem for equations of the form $u_t=F(u_{x^ix^j},u_{x^i},u,1,t,x)$, where $F(u_{ij},u_i,u,\beta,x)$ and $F(u_{ij},u_i,u,\beta,t,x)$ are positive homogeneous functions of the first degree in $(u_{ij},u_i,u,\beta)$, convex upwards in $(u_{ij})$, that satisfy a uniform strict ellipticity condition. Under certain smoothness conditions on $F$ and when the second derivatives of $F$ with respect to $(u_{ij},u_i,u,x)$ are bounded above, the $C^{2+\alpha}$ solvability of these problems in smooth domains is proved. In the course of the proof, a priori estimates in $C^{2+\alpha}$ on the boundary are constructed, and convexity and restrictions on the second derivatives of $F$ are not used in the derivation.
Bibliography: 13 titles.
Received: 30.11.1981
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1983, Volume 47, Issue 1, Pages 75–108
Bibliographic databases:
UDC: 517.9
MSC: Primary 35A05, 35B45, 35J25, 35K20; Secondary 26B35, 35B65, 35J60, 35K55
Language: English
Original paper language: Russian
Citation: N. V. Krylov, “Boundedly nonhomogeneous elliptic and parabolic equations in a domain”, Izv. Akad. Nauk SSSR Ser. Mat., 47:1 (1983), 75–108; Math. USSR-Izv., 22:1 (1984), 67–97
Citation in format AMSBIB
\Bibitem{Kry83}
\by N.~V.~Krylov
\paper Boundedly nonhomogeneous elliptic and parabolic equations in a~domain
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1983
\vol 47
\issue 1
\pages 75--108
\mathnet{http://mi.mathnet.ru/im1382}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=688919}
\zmath{https://zbmath.org/?q=an:0578.35024}
\transl
\jour Math. USSR-Izv.
\yr 1984
\vol 22
\issue 1
\pages 67--97
\crossref{https://doi.org/10.1070/IM1984v022n01ABEH001434}
Linking options:
  • https://www.mathnet.ru/eng/im1382
  • https://doi.org/10.1070/IM1984v022n01ABEH001434
  • https://www.mathnet.ru/eng/im/v47/i1/p75
  • This publication is cited in the following 57 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1140
    Russian version PDF:469
    English version PDF:70
    References:108
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024