Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1986, Volume 26, Issue 2, Pages 223–262
DOI: https://doi.org/10.1070/IM1986v026n02ABEH001140
(Mi im1354)
 

This article is cited in 11 scientific papers (total in 11 papers)

Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$

I. L. Bloshanskii
References:
Abstract: The concept of weak generalized localization almost everywhere is introduced. For the multiple Fourier series of a function $f$, weak generalized localization almost everywhere holds on the set $E$ ($E$ is an arbitrary set of positive measure $E\subset T^N=[-\pi,\pi]^N$) if the condition $f(x)\in L_p(T^N)$, $p\geqslant1$, $f=0$ on $E$ implies that the indicated series converges almost everywhere on some subset $E_1\subset E$ of positive measure. For a large class of sets $\{E\}$, $E\subset T^N$, a number of propositions are proved showing that weak localization of rectangular sums holds on the set $E$ in the classes $L_p$, $p\geqslant1$, if and only if the set $E$ has certain specific properties. In the course of the proof the precise geometry and structure of the subset $E_1$ of $E$ on which the multiple Fourier series converges almost everywhere to zero are determined.
Bibliography: 13 titles.
Received: 25.04.1983
Bibliographic databases:
UDC: 517.5
MSC: 42B05
Language: English
Original paper language: Russian
Citation: I. L. Bloshanskii, “Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$”, Math. USSR-Izv., 26:2 (1986), 223–262
Citation in format AMSBIB
\Bibitem{Blo85}
\by I.~L.~Bloshanskii
\paper Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$
\jour Math. USSR-Izv.
\yr 1986
\vol 26
\issue 2
\pages 223--262
\mathnet{http://mi.mathnet.ru//eng/im1354}
\crossref{https://doi.org/10.1070/IM1986v026n02ABEH001140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=791303}
\zmath{https://zbmath.org/?q=an:0609.42013}
Linking options:
  • https://www.mathnet.ru/eng/im1354
  • https://doi.org/10.1070/IM1986v026n02ABEH001140
  • https://www.mathnet.ru/eng/im/v49/i2/p243
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:456
    Russian version PDF:136
    English version PDF:23
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024