Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 4, Pages 717–741
DOI: https://doi.org/10.1070/im1997v061n04ABEH000135
(Mi im135)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the reconstructibility of frameworks from self-stresses

M. D. Kovalev
References:
Abstract: Let $\mathfrak P$ be the set of all frameworks in $\mathbb R^d$ consisting of rods connected by universal hinges with a given junction scheme and with given point of fastening of some hinges. The problem is to find conditions for a framework $\mathbf p\in\mathfrak P$ to be reconstructible from the space $W(\mathbf p)$ of its self-stresses. In other words, under what conditions is $\mathbf p$ the unique framework in $\mathfrak P$ with the given space $W(\mathbf p)$ of self-stresses? A complete answer to this question is obtained only for frameworks in the line. We also investigate geometric properties of the image of the rigidity map which are related to the study of frameworks admitting self-stresses.
Received: 14.03.1995
Bibliographic databases:
MSC: 52C25, 73K05
Language: English
Original paper language: Russian
Citation: M. D. Kovalev, “On the reconstructibility of frameworks from self-stresses”, Izv. Math., 61:4 (1997), 717–741
Citation in format AMSBIB
\Bibitem{Kov97}
\by M.~D.~Kovalev
\paper On the reconstructibility of frameworks from self-stresses
\jour Izv. Math.
\yr 1997
\vol 61
\issue 4
\pages 717--741
\mathnet{http://mi.mathnet.ru//eng/im135}
\crossref{https://doi.org/10.1070/im1997v061n04ABEH000135}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1480756}
\zmath{https://zbmath.org/?q=an:0893.52017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071094300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747420704}
Linking options:
  • https://www.mathnet.ru/eng/im135
  • https://doi.org/10.1070/im1997v061n04ABEH000135
  • https://www.mathnet.ru/eng/im/v61/i4/p37
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:351
    Russian version PDF:154
    English version PDF:17
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024