Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1986, Volume 26, Issue 1, Pages 53–76
DOI: https://doi.org/10.1070/IM1986v026n01ABEH001133
(Mi im1347)
 

This article is cited in 3 scientific papers (total in 3 papers)

Singular integral equations and the Riemann boundary value problem with infinite index in the space $L_p(\Gamma,\omega)$

S. M. Grudskii
References:
Abstract: The Riemann boundary value problem
$$ \varphi^+(t)-a(t)\varphi^-(t)= f(t),\qquad t\in\Gamma, $$
is considered on a simple closed piecewise smooth contour $\Gamma$ in the space $L_p(\Gamma,\omega)$, along with the corresponding singular integral operator
$$ A_{a,\Gamma}=P_\Gamma^+-a(t)P_\Gamma^- $$
with a bounded coefficient $a(t)$ bounded away from zero and having finitely many discontinuities of the second kind that are vorticity points of power type. A theory of one-sided invertibility of $A_{a,\Gamma}$ is constructed, the spaces $\operatorname{Ker}A_{a,\Gamma}$ and $\operatorname{Im}A_{a,\Gamma}$ are described, and a construction is given for the inverse operators.
Bibliography: 31 titles.
Received: 20.08.1982
Bibliographic databases:
UDC: 517.948
MSC: Primary 30E25, 45E05; Secondary 30D55, 35Q15, 45E10
Language: English
Original paper language: Russian
Citation: S. M. Grudskii, “Singular integral equations and the Riemann boundary value problem with infinite index in the space $L_p(\Gamma,\omega)$”, Math. USSR-Izv., 26:1 (1986), 53–76
Citation in format AMSBIB
\Bibitem{Gru85}
\by S.~M.~Grudskii
\paper Singular integral equations and the Riemann boundary value problem with infinite index in the space~$L_p(\Gamma,\omega)$
\jour Math. USSR-Izv.
\yr 1986
\vol 26
\issue 1
\pages 53--76
\mathnet{http://mi.mathnet.ru//eng/im1347}
\crossref{https://doi.org/10.1070/IM1986v026n01ABEH001133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=779189}
\zmath{https://zbmath.org/?q=an:0583.45002|0575.45006}
Linking options:
  • https://www.mathnet.ru/eng/im1347
  • https://doi.org/10.1070/IM1986v026n01ABEH001133
  • https://www.mathnet.ru/eng/im/v49/i1/p55
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:464
    Russian version PDF:129
    English version PDF:26
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024