|
This article is cited in 4 scientific papers (total in 4 papers)
Fourier transforms of rapidly decreasing functions
A. M. Sedletskii
Abstract:
If $f\in L^p(\mathbb R)$, $p\geqslant 2$, then the Fourier transform $F(z)$ of the function $\exp(-a|t|^\alpha)f(t)$, $a>0$, $\alpha>1$, belongs to the space of entire functions that are $p$-power integrable over the whole plane with some completely determined weight. Conversely, if $F(z)$ is an entire function in such a space, where $1\leqslant p\leqslant 2$, then $F(z)$ is a Fourier transform of the above form for some function $f\in L^p(\mathbb R)$.
Received: 02.03.1995
Citation:
A. M. Sedletskii, “Fourier transforms of rapidly decreasing functions”, Izv. Math., 61:3 (1997), 647–662
Linking options:
https://www.mathnet.ru/eng/im130https://doi.org/10.1070/im1997v061n03ABEH000130 https://www.mathnet.ru/eng/im/v61/i3/p187
|
|