Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 3, Pages 647–662
DOI: https://doi.org/10.1070/im1997v061n03ABEH000130
(Mi im130)
 

This article is cited in 4 scientific papers (total in 4 papers)

Fourier transforms of rapidly decreasing functions

A. M. Sedletskii
References:
Abstract: If $f\in L^p(\mathbb R)$, $p\geqslant 2$, then the Fourier transform $F(z)$ of the function $\exp(-a|t|^\alpha)f(t)$, $a>0$, $\alpha>1$, belongs to the space of entire functions that are $p$-power integrable over the whole plane with some completely determined weight. Conversely, if $F(z)$ is an entire function in such a space, where $1\leqslant p\leqslant 2$, then $F(z)$ is a Fourier transform of the above form for some function $f\in L^p(\mathbb R)$.
Received: 02.03.1995
Bibliographic databases:
MSC: 42A38
Language: English
Original paper language: Russian
Citation: A. M. Sedletskii, “Fourier transforms of rapidly decreasing functions”, Izv. Math., 61:3 (1997), 647–662
Citation in format AMSBIB
\Bibitem{Sed97}
\by A.~M.~Sedletskii
\paper Fourier transforms of rapidly decreasing functions
\jour Izv. Math.
\yr 1997
\vol 61
\issue 3
\pages 647--662
\mathnet{http://mi.mathnet.ru//eng/im130}
\crossref{https://doi.org/10.1070/im1997v061n03ABEH000130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1478564}
\zmath{https://zbmath.org/?q=an:0894.42003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997YH77500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747114762}
Linking options:
  • https://www.mathnet.ru/eng/im130
  • https://doi.org/10.1070/im1997v061n03ABEH000130
  • https://www.mathnet.ru/eng/im/v61/i3/p187
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024